Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện Toán 8 năm 2023 - 2024 phòng GDĐT Thiệu Hóa - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thiệu Hóa, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 29 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi huyện Toán 8 năm 2023 – 2024 phòng GD&ĐT Thiệu Hóa – Thanh Hóa : + Tìm các số nguyên tố a, b, c và số nguyên dương k thỏa mãn a2 + b2 + 16c2 = 9k2 + 18k + 10. + Cho hình vuông ABCD. Đường thẳng d đi qua C cắt hai tia AB, AD lần lượt tại M và N (AB < AM < AN). Gọi E là giao điểm của BC và DM; F là giao điểm của CD và BN; H là giao điểm của BN và DM. 1. Chứng minh EF song song với MN. 2. Chứng minh ADM đồng dạng với DFA và H là trực tâm của AEF. 3. Gọi giao điểm của AH và BC là K, giao điểm của AH và MN là O, giao điểm của MK và AC là I. Chứng minh MI/KI + AO/KO + CB/KB > 9.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lục Ngạn Bắc Giang
Nội dung Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 Đề thi chọn HSG cấp huyện lớp 8 môn Toán năm 2019 2020 Ngày 07 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang đã tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2019 – 2020. Đề thi chọn HSG cấp huyện Toán lớp 8 năm 2019 – 2020 do phòng GD&ĐT Lục Ngạn – Bắc Giang biên soạn, bao gồm 01 trang với 05 bài toán, được thi sinh hoàn thành trong thời gian 120 phút. Đây là cơ hội cho các học sinh thể hiện tài năng và kiến thức của mình trong môn Toán.
Đề thi HSG lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc
Nội dung Đề thi HSG lớp 8 môn Toán năm 2019 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi HSG lớp 8 môn Toán năm 2019 - 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc Đề thi HSG lớp 8 môn Toán năm 2019 - 2020 phòng GD ĐT Lập Thạch Vĩnh Phúc Xin chào quý thầy cô và các em học sinh lớp 8! Đây là đề thi HSG Toán lớp 8 năm 2019 - 2020 của phòng GD&ĐT Lập Thạch - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, nhằm giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Trích dẫn đề thi: 1. Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H thuộc BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E. a) Chứng minh rằng hai tam giác BEC và ADC đồng dạng. Tính độ dài đoạn BE theo m = AB. b) Gọi M là trung điểm của đoạn BE. Chứng minh rằng hai tam giác BHM và BEC đồng dạng. Tính số đo của góc AHM. c) Tia AM cắt BC tại G. Chứng minh. 2. Cho biểu thức A. a) Tìm x để giá trị của A được xác định. Rút gọn biểu thức A. b) Tìm giá trị nguyên của x để A nhận giá trị nguyên. 3. Phân tích các đa thức sau thành nhân tử. Đề thi này sẽ giúp các em ôn tập kiến thức Toán một cách hiệu quả, nắm vững các khái niệm và kỹ năng cần thiết để đạt kết quả cao trong kỳ thi HSG sắp tới. Chúc các em học tốt!
Đề thi học sinh giỏi lớp 8 môn Toán năm học 2018 2019 sở GD ĐT Bắc Ninh
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán năm học 2018 2019 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh Đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề thi học sinh giỏi môn Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh. Đây là kỳ thi nhằm tuyển chọn những em học sinh lớp 8 giỏi môn Toán đang học tập tại các trường THCS tại tỉnh Bắc Ninh để tuyên dương, khen thưởng, làm gương sáng cho các em học sinh khác noi theo. Đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 8 năm học 2018 - 2019 sở GD&ĐT Bắc Ninh: Cho hình vuông ABCD, gọi M là điểm bất kì trên cạnh BC. Trong nửa mặt phẳng bờ AB chứa C, dựng hình vuông AMHN. Qua M dựng đường thẳng d song song với AB, d cắt AH tại E. Đường thẳng AH cắt DC tại F. Chứng minh rằng BM = ND. Tứ giác EMFN là hình gì? Chứng minh chu vi tam giác MFC không đổi khi M thay đổi trên BC. Cho tam giác ABC có góc BAC bằng 90 độ, góc ABC bằng 20 độ. Các điểm E và F lần lượt nằm trên các cạnh AC, AB sao cho góc ABE bằng 10 độ và góc ACF bằng 30 độ. Tính CFE. Cho hình vuông ABCD và 9 đường thẳng cùng có tính chất là mỗi đường thẳng chia hình vuông ABCD thành hai tứ giác có tỉ số diện tích bằng 2/3. Chứng minh rằng có ít nhất 3 đường thẳng trong số đó cùng đi qua một điểm. Cho a, b, c là các số nguyên khác 0, a khác c sao cho \( \frac{(a^2 + b^2)}{(b^2 + c^2)} = \frac{a}{c} \). Chứng minh rằng \(a^2 + b^2 + c^2\) không phải là số nguyên tố.
Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận
Nội dung Đề thi học sinh giỏi huyện lớp 8 môn Toán năm 2018 2019 phòng GD ĐT Ninh Phước Ninh Thuận Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Đề thi học sinh giỏi huyện Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT Ninh Phước - Ninh Thuận Chào quý thầy cô và các em học sinh lớp 8! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi học sinh giỏi huyện Toán lớp 8 năm học 2018 - 2019 do phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận tổ chức. 1. Bài toán đầu tiên yêu cầu chúng ta tìm giá trị của x sao cho biểu thức A = (x - 1)(x + 2)(x + 3)(x + 6) đạt giá trị nhỏ nhất. Để giải bài toán này, chúng ta cần áp dụng kiến thức về đạo hàm và điểm cực tiểu của hàm số. 2. Bài toán tiếp theo đưa ra hình bình hành ABCD với DC = 2AD, I là trung điểm của cạnh CD, HI vuông góc với AB tại H. Gọi E là giao điểm của AI và DH. Chúng ta cần chứng minh một số quy luật trong tam giác và hình học để giải quyết bài toán này. 3. Bài toán cuối cùng liên quan đến tam giác vuông ABC tại A, với AD là phân giác và BD = 14√3, CD = 3√17. Chúng ta cần tính độ dài các cạnh góc vuông của tam giác. Đây là bài toán yêu cầu chúng ta áp dụng kiến thức về phân giác trong tam giác và tính chất của tam giác vuông. Qua các bài toán trên, chúng ta sẽ học được nhiều kiến thức và kỹ năng mới trong môn Toán. Chúc quý thầy cô và các em học sinh có kỳ thi học sinh giỏi thành công!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6