Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hậu Lộc 4 Thanh Hóa

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Hậu Lộc 4 Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HK1 Toán lớp 10 năm học 2019 – 2020 trường THPT Hậu Lộc 4 – Thanh Hóa, đề thi có mã đề 137 gồm 04 trang với 30 câu hỏi trắc nghiệm (chiếm 6 điểm) và 4 bài toán tự luận (chiếm 4 điểm), thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 năm 2019 – 2020 trường THPT Hậu Lộc 4 – Thanh Hóa : + Trong các câu sau, câu nào không phải là mệnh đề? A. Huyện đảo Hoàng Sa thuộc thành phố Đà Nẵng. B. Huyện đảo Trường Sa thuộc tỉnh Khánh Hòa. C. Trường Sa, Hoàng Sa là của Việt Nam. D. Hoàng Sa mà của Trung Quốc à? + Cho hai hàm số f(x) = 3x^2 + 2 và g(x) = x – 2x^3. Khẳng định nào sau đây đúng? A. f(x) không là hàm số chẵn cũng không là hàm số lẻ; g(x) là hàm số lẻ. B. f(x) là hàm số chẵn; g(x) không là hàm số chẵn cũng không là hàm số lẻ. C. f(x) là hàm số chẵn; g(x) là hàm số lẻ. D. f(x) là hàm số lẻ; g(x) là hàm số chẵn. + Cho phương trình (1). Một học sinh đã giải phương trình (1) theo các bước như sau: Bước 1: Điều kiện xác định. Bước 2: Phân tích vế phải theo hằng đẳng thức Bước 3: Rút gọn hai vế cho biểu thức x − 3 ta được phương trình. Bước 4: Bình phương hai vế và giải phương trình. Thử lại vào phương trình, kết luận tập nghiệm S. Chọn khẳng định đúng trong các khẳng định sau: A. Học sinh trên giải sai từ Bước 2. B. Học sinh trên giải sai từ Bước 3. C. Bài giải của học sinh trên là chính xác. D. Học sinh trên giải sai ở Bước 4. [ads] + Có bao nhiêu khẳng định đúng trong các khẳng định sau. (1) Hai vec tơ bằng nhau thì cùng phương. (2) Hai vec tơ ngược hướng có thể bằng nhau. (3) Hai vec tơ cùng độ dài có thể bằng nhau. (4) Hai vec tơ bằng nhau thì có độ dài bằng nhau. + Chọn khẳng định đúng: A. Nếu G là trọng tâm tam giác ABC thì GA + GB + GC = 0. B. Nếu G là trọng tâm tam giác ABC thì GA + GB + CG = 0. C. Nếu G là trọng tâm tam giác ABC thì GA + GB + GC = 0. D. Nếu G là trọng tâm tam giác ABC thì GA + BG + GC = 0. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đăng nhập để đọc

Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Ngô Gia Tự - Đắk Lắk
Chiều thứ Tư ngày 30 tháng 12 năm 2020, trường THPT Ngô Gia Tự, huyện Ea Kar, tỉnh Đắk Lắk tổ chức kỳ thi khảo sát chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2020 – 2021. Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 20 câu, chiếm 04 điểm, phần tự luận gồm 05 câu, chiếm 06 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian với hệ tọa độ Oxy, cho tam giác ABC với A(2;2), B(8;2), C(8;8). a) Tìm tọa độ các vectơ AB, AC và số đo góc CAB của tam giác ABC. b) Tìm m để điểm M(m;0) tạo với hai điểm A, B lập thành tam giác MAB vuông tại M. + Trong các câu sau: a) Cố lên, sắp tết rồi! b) Hà Nội là thủ đô của Việt Nam. c) 4 > 4. d) x = 1 + 2. Có bao nhiêu câu là mệnh đề? + Trong mặt phẳng tọa độ Oxy, cho (P) có phương trình: y = -2x^2 + bx + c. Tìm b và c biết (P) qua hai điểm A(-1;2) và B(-2;0).
Đề thi cuối kì 1 Toán 10 năm 2020 - 2021 trường THPT Thường Tín - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 đề thi cuối kì 1 Toán 10 năm học 2020 – 2021 trường THPT Thường Tín – Hà Nội; đề thi được biên soạn theo hình thức trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 15 câu, chiếm 3,0 điểm, phần tự luận gồm 05 câu, chiếm 7,0 điểm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi cuối kì 1 Toán 10 năm 2020 – 2021 trường THPT Thường Tín – Hà Nội : + Một sợi dây có chiều dài là 6 mét được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu mét để tổng diện tích hai hình thu được là nhỏ nhất? + Cho tam giác ABC có điểm M thuộc cạnh AC sao cho MA = -2MC, điểm N thuộc cạnh BM sao cho NB = -3NM, điểm P thuộc cạnh BC sao cho PB = kPC. a) Hãy phân tích véc tơ AN theo hai véc tơ AB và AC. b) Tìm giá trị của k để ba điểm A, N, P thẳng hàng. + Cho tam giác ABC. Tập hợp điểm M thỏa mãn: |MA + 2MB + 3MC| = |MB – MC| là: A. Đường tròn bán kính BC. B. Đường trung trực của đoạn BC. C. Trung điểm của BC. D. Đường tròn bán kính BC/6.
Đề thi học kì 1 Toán 10 năm học 2020 - 2021 sở GDĐT Vĩnh Phúc
Ngày … tháng 12 năm 2020, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc gồm 02 trang với 16 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 4,0 điểm, phần tự luận chiếm 6,0 điểm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết mã đề 135, 213, 358, 486. Trích dẫn đề thi học kì 1 Toán 10 năm học 2020 – 2021 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;-3) và B(-4;1). a) Tìm tọa độ trung điểm của đoạn thẳng AB. b) Tìm tọa độ điểm C sao cho A là trọng tâm của tam giác OBC (O là gốc tọa độ). + Cho hàm số y = x^2 + ax + b. Tìm các hệ số a, b biết đồ thị hàm số đi qua hai điểm M(-1;0), N(-2;-1). + Cho phương trình x^2 – 2x – 4√(x^2 – 2x + 2) + 2m – 1 = 0 (x là ẩn, m là tham số). Tìm tất cả các giá trị của m để phương trình trên có đúng hai nghiệm phân biệt.
Đề thi HK1 Toán 10 năm 2020 - 2021 trường THPT Lê Quý Đôn - Hà Nội
Đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội gồm 10 câu trắc nghiệm và 09 câu tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi HK1 Toán 10 năm 2020 – 2021 trường THPT Lê Quý Đôn – Hà Nội : + Cho phương trình x2 – (2m – 1)x + m2 – 3m + 1 = 0 (m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 sao cho biểu thức P = x1(x2 + 2) + x2(x1 + 2) đạt giá trị nhỏ nhất. + Cho tam giác ABC. Điểm M trên cạnh BC thỏa mãn BM = 1/3.BC. N là trung điểm của AC. Điểm P thỏa mãn AP = 2AB. a. Phân tích AM qua hai véctơ không cùng phương AB, AC. b. Chứng minh rằng M, N, P thẳng hàng. + Trong mặt phẳng tọa độ Oxy cho hai vectơ a(-3;1), b(2;5). Tính tọa độ của véctơ u = 2a – b.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6