Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG

Tài liệu ứng dụng của tích phân gồm 113 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng của tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 1). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 1). + Dạng 1.2 Bài toán có điều kiện (Trang 13). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 23). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 23). + Dạng 2.2 Bài toán có điều kiện (Trang 28). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 30). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 30). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 33). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 37). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 37). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 41). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 45). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 48). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 48). + Dạng 1.2 Bài toán có điều kiện (Trang 60). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 74). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 74). + Dạng 2.2 Bài toán có điều kiện (Trang 81). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 84). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 84). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 88). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 91). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 91). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 99). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 108). Xem thêm : + Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG + Các dạng toán tích phân thường gặp trong kỳ thi THPTQG

Nguồn: toanmath.com

Đăng nhập để đọc

109 bài toán trắc nghiệm nguyên hàm - Trần Công Diêu
Tài liệu gồm 24 trang với 109 bài tập trắc nghiệm nguyên hàm do thầy Trần Công Diêu sưu tầm và biên soạn. Trích dẫn tài liệu : + Mệnh dề nào sau đây sai? A. Nếu F(x) là một nguyên hàm của f(x) trên (a; b) và C là hằng số thì ∫f(x) = F(x) + C B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b) C. F(x) là một nguyên hàm của f(x) trên (a; b) ⇔ F'(x) = f(x) ∀x ∈ (a; b) D. (∫f(x)dx)’ = f(x) + Xét hai khẳng định sau: (I) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó (II) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó [ads] Trong hai khẳng định trên: A. Chỉ có (I) đúng B. Chỉ có (II) đúng C. Cả hai đều đúng D. Cả hai đều sai + Hàm số f(x) có nguyên hàm trên K nếu: A. f(x) xác định trên K B. f(x) có giá trị lớn nhất trên K C. f(x) có giá trị nhỏ nhất trên K D. f(x) liên tục trên K
Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi
Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.
50 bài trắc nghiệm tích phân cơ bản thường gặp - Phạm Ngọc Tính
Tuyển tập 50 bài toán trắc nghiệm chuyên đề tích phân cơ bản và thường gặp trong các đề thi trắc nghiệm do thầy Phạm Ngọc Tính biên soạn. Tài liệu gồm 16 trang có đáp án. Trích dẫn tài liệu : + Hãy chọn kết luận sai: A. d(…) = 2xdx chỗ trống là x^2 + C B. d(…) = 3xdx thì chỗ trống là x^4 + C C. d(…) = cosxdx thì chỗ trống bằng sinx + C D. d(…) = (1 + tan2x)dx thì chỗ trống là tanx + C [ads] + F(x) là một nguyên hàm của hàm số y = cos2x/[(cosx)^2.(sinx)^2]. Nếu F(π/4) = 0 thì ∫cos2x/[(cosx)^2.(sinx)^2]dx bằng: A. tanx + cotx + 2 B. tanx + cotx – 2 C. -tanx – cotx + 2 D. -tanx – cotx – 2 + F(x) là một nguyên hàm của hàm số y = tanx. Nếu F(π/3) = ln 8 thì tanxdx bằng: A. ln|cosx| + ln 3 B. -ln|cosx| + ln 4 C. ln|cosx| – ln 3 D. -ln|cosx| + ln 4
Phân dạng các bài toán tích phân - Phạm Minh Tứ
Tài liệu phân dạng các bài toán tích phân của thầy giáo Phạm Minh Tứ gồm 42 trang. Các bài toán tích phân được phân loại theo phương pháp giải, các ví dụ mẫu và bài tập đều có lời giải chi tiết. Nội dung tài liệu: I. Khái niệm tích phân II. Tính chất của tích phân III. Các phương pháp tính tích phân A. Phương pháp phân tích: Trong phương pháp này, chúng ta cần: + Kỹ năng: Cần biết phân tích f(x) thành tổng, hiệu, tích, thương của nhiều hàm số khác, mà ta có thể sử dụng được trực tiếp bảng nguyên hàm cơ bản tìm nguyên hàm của chúng. + Kiến thức: Như đã trình bày trong phần “Nguyên hàm”, cần phải nắm trắc các kiến thức về Vi phân, các công thức về phép toán lũy thừa, phép toán căn bậc n của một số và biểu diễn chúng dưới dạng lũy thừa với số mũ hữu tỷ. [ads] B. Phương pháp đổi biến số I. Phương pháp đổi biến số dạng 1: Đặt x = v(t) II. Phương pháp đổi biến số dạng 2: Đặt t = u(x) Đối với tích phân hàm lượng giác ∫f(x)dx, ta có quy tắc đổi biến số sau: a. Nếu f(x) = R[(sinx)^m; (cosx)^n] thì ta chú ý: + Nếu m lẻ, n chẵn: đặt cosx = t + Nếu n lẻ, m chẵn: đặt sinx = t + Nếu m, n đều lẻ: đặt cosx = t hoặc sinx = t đều được + Nếu m, n đề chẵn: đặt tanx = t b. Phải thuộc các công thức lượng giác và các công thức biến đổi lượng giác, các hằng đẳng thức lượng giác: công thức hạ bậc, nhân đôi, nhân ba, tính theo tang góc chia đôi …. Nói chung để tính được một tích phân chứa các hàm số lượng giác, học sinh đòi hỏi phải có một số yếu tố sau: + Biến đổi lượng giác thuần thục + Có kỹ năng khéo léo nhận dạng được cách biến đỏi đưa về dạng đã biết trong nguyên hàm

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6