Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mặt nón, mặt trụ, mặt cầu - Phạm Hoàng Long

Tài liệu gồm 74 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, bao gồm lý thuyết trọng tâm, công thức cần nhớ, bài tập trắc nghiệm và bài tập tự luận chuyên đề mặt nón, mặt trụ, mặt cầu; giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 2 và ôn thi tốt nghiệp THPT, tuyển sinh vào Cao đẳng – Đại học. Nón – Trụ – Cầu. 1. Hình nón. 2. Hình trụ. 3. Hình cầu. 4. Hình nón, hình trụ, hình cầu nội tiếp (ngoại tiếp). Bài tập tự luận. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện. Bài tập trắc nghiệm. Vấn đề 1. Hình nón. Vấn đề 2. Hình trụ. Vấn đề 3. Hình cầu. Vấn đề 4. Khối tròn xoay nội tiếp, ngoại tiếp đa diện.

Nguồn: toanmath.com

Đăng nhập để đọc

Một số công thức tính bán kính mặt cầu - Trần Lê Quyền
Tài liệu gồm 8 trang với phần giới thiệu công thức tính, ví dụ mẫu có lời giải và các bài tập trắc nghiệm tính bán kính mặt cầu. Trích dẫn tài liệu : + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a, BC = 2a. Cạnh bên SA vuông góc với mặt đáy và SA = a√3. Tính bán kính của mặt cầu ngoại tiếp hình chóp S.ABC. + Cho tứ diện OABC có A, B, C thay đổi nhưng luôn thỏa mãn OA, OB, OC đôi một vuông góc và 2OA+OB +OC = 3. Giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp OABC là? + Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC = 1; các điểm AB, thay đổi trên OxOy, sao cho OA + OB = OC. Tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC. [ads] + Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a/√3. Gọi D là điểm đối xứng của A qua BC. Tính bán kính của mặt cầu ngoại tiếp hình chóp S.BCD. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Đường thẳng BC tạo với (SAC) một góc 30◦. Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABC.
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.
Chuyên đề mặt nón - mặt trụ - mặt cầu - Trần Đình Cư
Tài liệu gồm 58 trang với lý thuyết và bài tập trắc nghiệm chủ đề mặt nón, mặt trụ và mặt cầu, các bài tập đều có đáp án và lời giải chi tiết. HÌNH NÓN, MẶT NÓN, KHỐI NÓN 1. Định nghĩa mặt nón Cho đường thẳng Δ. Xét một đường thẳng d cắt Δ tại O và không vuông góc với Δ. Mặt tròn xoay sinh bởi đường thẳng d như thế khi quay quanh Δ gọi là mặt nón tròn xoay (hay đơn giản là mặt nón). 2. Hình nón tròn xoay Cho ΔOIM vuông tại I quay quanh cạnh góc vuông OI thì đường gấp khúc OIM tạo thành một hình, gọi là hình nón tròn xoay (gọi tắt là hình nón). 3. Công thức diện tích và thể tích của hình nón Cho hình nón có chiều cao là h, bán kính đáy r và đường sinh là l thì có: Diện tích xung quanh: Sxq=π.r.l Diện tích đáy (hình tròn): Sd = πr^2 Diện tích toàn phần hình tròn: S = Sd + Sxq Thể tích khối nón: V = 1/3.π.r^2.h 4. Tính chất [ads] MẶT TRỤ – HÌNH TRỤ VÀ KHỐI TRỤ 1. Mặt trụ Mặt trụ là hình tròn xoay sinh bởi đường thẳng l khi xoay quanh đường thẳng song song và cách l một khoảng R. Lúc đó, được gọi là trục, R gọi là bán kính, l gọi là đường sinh. Mặt trụ là tập hợp tất cả những điểm cách đường thẳng cố định một khoảng R không đổi. 2. Hình trụ Hình trụ là hình giới bạn bởi mặt trụ và hai đường tròn bằng nhau, là giao tuyến của mặt trụ và 2 mặt phẳng vuông góc với trục. Hình trụ là hình tròn xoay khi sinh bởi bốn cạnh của hình một hình chữ nhật khi quay xung quanh một đường trung bình của hình chữ nhật đó. 3. Khối trụ Khối trụ là hình trụ cùng với phần bên trong của hình trụ đó. MẶT CẦU – HÌNH CẦU VÀ KHỐI CẦU 1. Định nghĩa và các khái niệm 2. Vị trí tương đối giữa mặt cầu và mặt phẳng 3. Một sô dạng mặt cầu ngoại tiếp thường gặp Dạng 1. Hình chóp có các đỉnh nhìn hai đỉnh còn lại dưới 1 góc vuông Dạng 2. Hình chóp có các cạnh bên bằng nhau Dạng 3. Mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy Dạng 4. Mặt cầu ngoại tiếp hình chóp có mặt bên vuông góc với mặt đáy
Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp - Hoàng Trọng Tấn
Tài liệu Phương pháp giải nhanh bài toán mặt cầu ngoại tiếp hình chóp – Hoàng Trọng Tấn gồm 10 trang với các công thức giải nhanh kèm theo ví dụ minh họa và 27 bài toán trắc nghiệm áp dụng. Loại 1: Hình chóp có các đỉnh nhìn đoạn thẳng nối 2 đỉnh còn lại dưới 1 góc vuông Gọi d là độ dài đoạn thẳng trên thì ta có bán kính mặt cầu ngoại tiếp là: R = d/2 Loại 2 : Hình chóp đều Gọi h là độ cao hình chóp và k là chiều dài cạnh bên thì ta có bán kính mặt cầu là: R = k^2/2h [ads] Loại 3 : Hình chóp có cạnh bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rđ là bán kính của đáy thì bán kính mặt cầu: R = √(Rđ^2 + (h/2)^2) Loại 4: Hình chóp có mặt bên vuông góc với đáy Gọi h là chiều cao hình chóp và Rb, Rđ là bán kính của mặt bên, mặt đáy, GT là độ dài giao tuyến của mặt bên và đáy thì bán kính mặt cầu: R = √(Rb^2 + Rđ^2 – GT^2/4) Bài tập vận dụng

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6