Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Vĩnh Phúc
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Vĩnh Phúc Bản PDF -
Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD ĐT Vĩnh Phúc Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 - 2022 sở GD ĐT Vĩnh Phúc
Chào quý thầy, cô giáo và các em học sinh!
Chúng tôi xin giới thiệu đến quý vị đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán và chuyên Tin) năm 2021 - 2022 của sở GD&ĐT Vĩnh Phúc. Bộ đề thi này bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập hiệu quả. Dưới đây là một số câu hỏi trong đề thi:
1. Cho hình thang ABCD (AD // BC, AD < BC). Các điểm E, F lần lượt thuộc các cạnh AB, CD. Đường tròn ngoại tiếp tam giác AEF cắt đường thẳng AD tại M, đường tròn ngoại tiếp tam giác CEF cắt đường thẳng BC tại điểm N. Chứng minh rằng: a) Tứ giác EFQP nội tiếp đường tròn. b) PQ song song với BC và tâm đường tròn ngoại tiếp các tam giác PQE, AMF, CEN cùng nằm trên một đường thẳng cố định. c) Các đường thẳng MN, BD, EF đồng quy tại một điểm.
2. Thầy Quyết viết các số nguyên 1, 2, 3,…., 2021, 2002 lên bảng và thực hiện việc thay số như sau: Mỗi lần thay số, thầy chọn ra hai số bất kì trên bảng, xóa hai số này đi và viết lên bảng số trung bình cộng của hai số vừa xóa. Sau 2021 lần thay số như vậy, trên bảng còn lại duy nhất một số. a) Chứng minh rằng số còn lại trên bảng có thể là số 2021. b) Chứng minh rằng số còn lại trên bảng có thể là số 2006.
3. Tìm tất cả các bộ ba số nguyên dương a, b, c sao cho a^2 + b^2 = c^2.
Đề thi đầy thách thức này chắc chắn sẽ giúp các em thử sức và nâng cao kiến thức. Hãy cùng nhau ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới nhé!