Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 - 2022 sở GDĐT Yên Bái

Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Yên Bái gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2021. Trích dẫn đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2021 – 2022 sở GD&ĐT Yên Bái : + Một nhóm học sinh gồm 10 em trong đó có 2 học sinh lớp 11A1, 3 học sinh lớp 12A2 và 5 học sinh lớp 12A1. Xếp ngẫu nhiên 10 học sinh đó thành một hàng ngang. Tính xác suất để không có 2 học sinh cùng lớp đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA = 2a, BD = 3.AC, mặt bên SAB là tam giác cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy trùng với trung điểm H của đoạn AO. 1) Tính thể tích của khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng SB và CD. + Cho tam giác ABC (AB < AC) nội tiếp đường tròn (O), M là trung điểm của cạnh BC. Đường phân giác trong của BAC cắt cạnh BC tại D và cắt đường tròn (O) tại điểm P (P khác A). Gọi E là điểm đối xứng với D qua M; trên đường thẳng AO và đường thẳng AD lần lượt lấy các điểm H, F sao cho các đường thẳng HD, FE cùng vuông góc với đường thẳng BC. 1) Gọi K là giao điểm của PE và DH. Chứng minh rằng BHCK là tứ giác nội tiếp và bốn điểm B, H, C, F cùng nằm trên một đường tròn. 2) Gọi (w) là đường tròn qua bốn điểm B, H, C, F và T là giao điểm khác F của AD và (w). Biết đường tròn ngoại tiếp tam giác MTP cắt đường thẳng TH tại điểm thứ hai Q (Q khác T). Chứng minh rằng đường thẳng QA tiếp xúc với đường tròn (O).

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 - 2020 sở GDĐT Đồng Nai
Ngày … tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Đồng Nai gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Đồng Nai : + Cho hàm số y = 1 + (m^2 – 4)x + (4m – 1)x^2 – x^3, với m là tham số. a) Hỏi có bao nhiêu giá trị nguyên của m để hàm số đã cho nghịch biến trên R. b) Tìm các số thực m để hàm số đã cho đạt cực đại tại x = 1. c) Tìm các số thực m để giá trị nhỏ nhất của hàm số đã cho trên [-2;-1] bằng 9. + Một trang trại xây một bể nước hình hộp chữ nhật không nắp có thể tích bằng 18,432 m3 (tính cả thành và đáy bể), biết đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí xây bể được tính theo tổng diện tích của thành (mặt bên ngoài) và đáy bể với giá 800 nghìn đồng / m2. Tìm các kích thước của bể để chi phí xây bể là nhỏ nhất và tính gần đúng chi phí đó. [ads] + Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và SA vuông góc mặt phẳng đáy, SA = a. Biết M, N là hai điểm thay đổi lần lượt thuộc hai cạnh AB và AD sao cho AM + AN = a. 1) Chứng minh thể tích S.AMCN có giá trị không đổi. 2) Tính theo a khoảng cách từ C đến (SMN). Chứng minh mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định. + Một tổ gồm 8 học sinh là An, Bình, Châu, Dũng, Em, Fin, Giang, Hạnh sẽ cùng đi trên một chuyến bay để dự đợt học tập, tham quan và trải nghiệm; đại lý dành cho tổ 8 vé máy bay có số ghế là 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H. Mỗi học sinh chọn ngẫu nhiên một vé. Tính xác suất để có đúng 4 học sinh trong tổ mà mỗi bạn chọn được một vé có chữ của số ghế trùng với chữ đầu của tên mình.
Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 - 2020 sở GDĐT Hưng Yên
Ngày … tháng 01 năm 2020, sở Giáo dục và Đào tạo tỉnh Hưng Yên tổ chức kỳ thi chọn học sinh giỏi THPT cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Hưng Yên gồm có 01 trang với 06 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Hưng Yên : + Cho tam giác ABC vuông tại A có ABC = 60 độ. Đường phân giác của góc ABC cắt AC tại I. Trên nửa mặt phẳng bờ là đường thẳng AC, vẽ nửa đường tròn tâm I tiếp xúc với cạnh BC. Cho miền tam giác ABC và nửa hình tròn trên quay quanh trục AC tạo thành các khối tròn xoay có thể tích lần lượt là V1, V2. Tính tỉ số V1/V2. [ads] + Cho hình chóp S.ABCD có ABCD là hình thang cân với AD = 2a, AB = BC = CD = a, cạnh SA vuông góc với đáy. Gọi M là trung điểm của SB và N là điểm thuộc đoạn SD sao cho NS = 2ND. Biết khoảng cách từ S đến mặt phẳng (AMN) bằng 6a√43/43, tính thể tích của khối chóp S.ABCD theo a. + Cho hàm số y = x^3 + mx^2 + 1 có đồ thị (Cm). Tìm các giá trị của tham số m để đường thẳng d: y = 1 – x cắt đồ thị (Cm) tại 3 điểm phân biệt sao cho tiếp tuyến của đồ thị (Cm) tại hai trong ba điểm đó vuông góc với nhau.
Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 - 2020
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020, kỳ thi diễn ra trong các ngày 27 và 28 tháng 12 năm 2019. Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 (VMO 2019 – 2020) gồm tổng cộng 07 bài toán: Giới hạn dãy số, Bất đẳng thức, Dãy số nguyên, Hình học phẳng, Hệ phương trình, Hình học phẳng, Tổ hợp. Tổng quan về đề thi, có thể nói đề ngày 1 so với “cùng kỳ năm trước” quả thật rất khác. Các câu hỏi đều có ý a để dẫn dắt gợi mở và thậm chí là cho điểm. Ý tưởng tuy không mới mẻ bằng năm trước nhưng cũng là các thử thách đáng kể với thí sinh. Hầu hết các thí sinh nếu ôn luyện cẩn thận sẽ làm tốt 4 ý a, và có thể làm thêm 1 ý b nào đó nữa. Các ý b có độ khó cũng khá tương đương nhau, tùy vào sở trường của thí sinh, nhưng nhìn chung số bạn làm được trọn vẹn cả bài hình là không nhiều. Ngày thi thứ hai có một bất ngờ lớn khi xuất hiện câu biện luận hệ phương trình cũng như ý tổ hợp a quá nhẹ nhàng. Các câu hệ a và tổ a xem như cho điểm hoàn toàn. Cả câu hình và tổ b cũng ở mức trung bình (xây dựng mô hình khá đơn giản). Tuy nhiên, câu hệ b và tổ c quả thực là thách thức lớn, đòi hỏi phải kỹ năng xử lý tình huống tốt. Nhưng nói chung, đề thi năm nay mới mẻ, đòi hỏi thí sinh vừa phải nắm chắc kiến thức, vừa phải có ít nhiều sáng tạo mới có thể làm trọn vẹn được. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 : + Cho số nguyên dương n > 1. Ký hiệu T là tập hợp tất cả các bộ có thứ tự (x, y, z) trong đó x, y, z là các số nguyên dương đôi một khác nhau và 1 ≤ x, y, z ≤ 2n. Một tập hợp A các bộ có thứ tự (u, v) được gọi là “liên kết” với T nếu với mỗi phần tử (x, y, z) ∈ T thì {(x, y),(x, z),( y, z)} ∩ A = ∅. a) Tính số phần tử của T. b) Chứng minh rằng tồn tại một tập hợp liên kết với T có đúng 2n(n − 1) phần tử. c) Chứng minh rằng mỗi tập hợp liên kết với T có không ít hơn 2n(n− 1) phần tử. + Cho dãy số (an) xác định bởi a1 = 5, a2 = 13 và an+1 = 5an – 6an-1 với mọi n lớn hơn hoặc bằng 2. a) Chứng minh rằng hai số hạng liên tiếp của dãy trên nguyên tố cùng nhau. b) Chứng minh rằng nếu p là ước nguyên tố của a2^k thì (p – 1) chia hết cho 2^(k + 1) với mọi số tự nhiên k. [ads] + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và có trực tâm H. Gọi D, E, F lần lượt là các điểm đối xứng của O qua các đường thẳng BC, CA, AB. a) Gọi Ha là điểm đối xứng của H qua BC, A’ là điểm đối xứng của A qua O và Oa là tâm của đường tròn ngoại tiếp tam giác BOC. Chứng minh rằng HaD và OaA’ cắt nhau trên (O). b) Lấy điểm X sao cho tứ giác AXDA’ là hình bình hành. Chứng minh rằng ba đường tròn ngoại tiếp các tam giác AHX, ABF và ACE có một điểm chung thứ hai khác A.
Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lâm Đồng
Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6