Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Mạc Đĩnh Chi - TP HCM

Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong kỳ thi học kỳ 1, phòng thi số 1 có 24 học sinh trong đó có 4 học sinh tên An, Bảo, Cường, Danh. Trong phòng thi có 24 bàn xếp thành 4 dãy theo hàng dọc, mỗi dãy có 6 bàn. Giám thị phòng thi bố trí cho các học sinh ngồi ngẫu nhiên vào 24 bàn, mỗi bàn 1 học sinh. Tính xác suất 4 bạn có tên trên ngồi cạnh nhau theo cùng một hàng dọc. + Xác suất ném bóng vào rổ thành công trong mỗi lần ném của bốn học sinh An, Bảo, Cường, Danh lần lượt là 0.5, 0.6, 0.7, 0.8. Cho mỗi học sinh trên ném bóng vào rổ 1 lần. Tính xác suất có ít nhất một người ném thành công. + Trên một đường tròn cho n điểm phân biệt. Biết số tam giác có 3 đỉnh lấy từ n điểm này nhiều hơn số đoạn thẳng có 2 đầu mút cũng được lấy từ n điểm này là 75. Tìm n.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi học kỳ I Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Sỹ Sách - Nghệ An
Đề thi học kỳ I Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Sỹ Sách – Nghệ An gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ I Toán 11 : + Cho hình chóp S.ABC; gọi P là trung điểm của đoạn thẳng SA; điểm Q thuộc đoạn thẳng SC sao cho SQ = 2QC. a) Tìm giao điểm của đường thẳng PQ và mặt phẳng (ABC). b) Tìm giao tuyến của hai mặt phẳng (BPQ) và (ABC). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; gọi O là giao điểm của hai đường chéo AC và BD; hãy chọn khẳng định sai. A. Hai mặt phẳng (SAB) và (ABCD) có giao tuyến là đường thẳng AB. B. Đường thẳng AB song song với mặt phẳng (SAC). C. Đường thẳng SO cắt mặt phẳng (ABCD) tại điểm O. D. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là đường thẳng SO. [ads] + Cho hình chóp S.ABC; gọi M; N lần lượt là trung điểm của các đoạn thẳng SA; SB; gọi P là điểm thuộc đoạn thẳng SC sao cho SP = 2 PC; hãy chọn khẳng định sai. A. Đường thẳng MP và mặt phẳng (ABC) cắt nhau. B. Giao tuyến của hai mặt phẳng (MNP) và (SAB) là đường thẳng MN. C. Thiết diện của hình chóp S.ABC khi cắt bởi mặt phẳng (MNP) là tam giác BMP. D. Đường thẳng MN và mặt phẳng (ABC) song song với nhau.
Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Thạch Thành 1 - Thanh Hóa
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa gồm 4 bài toán tự luận và 20 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Cho tứ diện đều ABCD cạnh 2a. Gọi M , N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. a) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (BCD) b) Tính diện tích thiết diện của tứ diện cắt bởi mặt phẳng (MNP) + Xét trên tập xác định thì: A. hàm số lượng giác có tập giá trị là [-1; 1] B. hàm số y = cosx có tập giá trị là [-1; 1] C. hàm số y = tanx có tập giá trị là [-1; 1] D. hàm số y = cotx có tập giá trị là [-1; 1] [ads] + Khẳng định nào sau đây là đúng về phép tịnh tiến? A. Phép tịnh tiến theo véctơ v biến điểm M thành điểm M’ thì véctơ v = MM’ B. Phép tịnh tiến là phép đồng nhất nếu véctơ tịnh tiến v = 0 C. Nếu phép tịnh tiến theo véctơ v biến 2 điểm M, N thành hai điểm M’, N’ thì MNN’M’ là hình bình hành D. Phép tịnh tiến biến một đường tròn thành một elip
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Trãi - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Trãi – Hà Nội gồm 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là? A. 120   B. 360 C .240   D. Kết quả khác + Cho hai đường thẳng (d): x – y + 1 = 0 và (d’): x – y – 5 = 0. Có bao nhiêu điểm I thoả mãn điều kiện phép đối xứng tâm I biến (d) thành (d’). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD 1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng (SCD). 2) Tìm giao tuyến của mp(MNP) và mp(ABCD). 3) Tìm giao điểm G của đường thẳng SC và mp(MNP). Tính tỷ số SC/SG. Bạn đọc có thể tham khảo thêm các đề thi HK1 Toán 11 của các trường THPT và sở GD&ĐT trên toàn quốc tại đây.
Đề thi học kỳ I Toán 11 năm học 2017 - 2018 trường THPT Yên Mỹ - Hưng Yên
Đề thi học kỳ I Toán 11 năm học 2017 – 2018 trường THPT Yên Mỹ – Hưng Yên mã đề 162 gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ I Toán 11 : + Phép tịnh tiến T theo vectơ u khác 0, biến đường thẳng d thành đường thẳng d’. Nếu d’ trùng với d thì giá của vectơ u: A. không song song với d. B. trùng với d. C. song song với d. D. song song hoặc trùng với d. + Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, CD. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Chứng minh MN song song với (SBC). [ads] + Với mọi x thuộc khoảng (0; π/2), so sánh cos(sinx) với cos1 thì: A. không so sánh được. B. cos(sinx) < cos1. C. cos(sinx) > cos1. D. cos(sinx) ≥ cos1.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6