Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử HSG lần 3 Toán 12 năm 2023 - 2024 trường THPT Trần Văn Lan - Nam Định

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi lần 3 môn Toán 12 năm học 2023 – 2024 trường THPT Trần Văn Lan, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm một lựa chọn và 20 câu ghi đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG lần 3 Toán 12 năm 2023 – 2024 trường THPT Trần Văn Lan – Nam Định : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng a 2. Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên AD. Tính khoảng cách giữa hai đường thẳng EF và SK. + Cho hình trụ T có hai hình tròn đáy là O và O. Xét hình nón N có đỉnh O đáy là hình tròn O và đường sinh hợp với đáy một góc. Biết tỉ số giữa diện tích xung quanh hình trụ T và diện tích xung quanh hình nón N bằng 3. Tính số đo góc. + Ông Tuấn gửi 9,8 triệu đồng tiết kiệm với lãi suất 8,4%/năm và lãi suất hàng năm được nhập vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm ông Tuấn thu được tổng số tiền 20 triệu đồng (biết rằng lãi suất không thay đổi).

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Cần Thơ
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán THPT năm 2018 2019 sở GD ĐT Cần Thơ Bản PDF Ngày 27 tháng 02 năm 2019, sở Giáo dục và Đào tạo Cần Thơ tổ chức kỳ thi chọn học sinh giỏi khối THPT cấp thành phố lớp 12 môn Toán năm học 2018 – 2019. Đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ gồm 02 trang với 08 bài toán tự luận, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi học sinh giỏi Toán lớp 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ : + Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai ngoại ngữ là tiếng Anh và tiếng Pháp. [ads] + Năm bạn học sinh Tính, Nghĩa, Tuấn, Phú và Thuận ở chung một phòng trong ký túc xá của một trường trung học phô thông. Một hôm, người quản lý ký túc xá đến phòng của năm học sinh này để xác định lại hộ khẩu nhà của từng học sinh. Vì đều là học sinh giỏi toán nên các học sinh không trả lời trực tiếp mà nói với người quản lý ký túc xá như sau: – Tính: “Nhà bạn Phú ở Thới Lai còn nhà em ở Cờ Đỏ”. – Nghĩa: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Tuấn ở Ô Môn”. – Tuấn: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Phú ở Thốt Nốt”. – Phú: “Nhà em ở Thới Lai còn nhà bạn Thuận ở Ninh Kiều”. – Thuận: “Nhà em ở Ninh Kiều còn nhà bạn Tính ở Thốt Nốt. Em hãy giúp người quản lý ký túc xá xác định đúng hộ khẩu nhà của các học sinh trên. Biết răng trong câu trả lời của mỗi học sinh đều có một phần đúng và một phần sai đồng thời mỗi địa phương là địa chỉ hộ khâu của đúng một học sinh. + Một nhà sản xuất sữa bột dành cho trẻ em cần thiết kế bao bì cho loại sản phẩm mới. Theo yêu cầu của lãnh đạo nhà máy, hộp sữa mới có dạng hình hộp chữ nhật với đáy là hình vuông hoặc có dạng một hình trụ. Biết rằng hộp sữa mới có thể tích bằng 1dm3. Hãy giuýp lãnh đạo nhà máy thiết kế hộp sữa này sao cho vật liệu sử dụng làm bao bì là ít nhất.
Đề thi chọn HSG lớp 12 môn Toán năm 2018 2019 sở GD ĐT thành phố Đà Nẵng
Nội dung Đề thi chọn HSG lớp 12 môn Toán năm 2018 2019 sở GD ĐT thành phố Đà Nẵng Bản PDF Sytu chia sẻ đến thầy, cô và các em học sinh khối 12 nội dung đề thi chọn HSG Toán lớp 12 năm 2018 – 2019 sở GD&ĐT thành phố Đà Nẵng, đề có mã đề 169 gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh làm bài thi môn Toán trong 90 phút, kỳ thi nhằm tuyển chọn các em học sinh khối 12 giỏi môn Toán đang học tập tại các trường học trên địa bàn thành phố Đà Nẵng, các em đạt giải chính là tấm gương để học sinh toàn thành phố noi theo, các em cũng sẽ được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi môn Toán cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán lớp 12 năm 2018 – 2019 sở GD&ĐT thành phố Đà Nẵng : + Cho hình trụ (T) có hai hình tròn đáy là (O) và (O’). Xét hình nón (N) có đỉnh O’, đáy là hình tròn (O) và đường sinh hợp với đáy một góc α. Biết tỉ số giữa diện tích xung quanh hình trụ (T) và diện tích xung quanh hình nón (N) bằng 3. Tính số đo góc α. [ads] + Trong không gian Oxyz, cho mặt cầu (S1) có tâm I1(1;0;1), bán kính R1 = 2 và mặt cầu (S2) có tâm I2 = (1;3;5), bán kính R2 = 1. Đường thẳng d thay đổi nhưng luôn tiếp xúc với (S1), (S2) lần lượt tại A và B. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của đoạn AB. Tính P = M.m. + Một cấp số nhân với công bội bằng -2, có số hạng thứ ba bằng 8 và số hạng cuối bằng -1024. Hỏi cấp số nhân đó có bao nhiêu số hạng? File WORD (dành cho quý thầy, cô):
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bến Tre
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bến Tre Bản PDF Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bến Tre (dành cho hệ THPT) gồm 04 câu tự luận, học sinh có 180 phút để làm bài, kỳ thi nhằm tuyển chọn các em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bến Tre để thành lập đội tuyển học sinh giỏi Toán lớp 12 cấp tỉnh, tham dự kỳ thi HSG Toán THPT cấp Quốc gia, các em đạt giải cũng sẽ là tấm gương trong học tập cho học sinh toàn tỉnh, lời giải chi tiết của đề thi được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bến Tre : + Bạn An có đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q trong đó p và q là các số nguyên tố cùng nhau, tìm q – p. [ads] + Cho hình chóp S.ABC, có SA vuông góc với mặt phẳng (ABC), SA = 2a và tam giác ABC vuông tại C với AB = 2a, góc BAC = 30 độ. Gọi M là điểm di động trên cạnh AC, đặt AM = x (0 ≤ x ≤ a√3). Tính khoảng cách từ S đến BM theo a và x. Tìm các giá trị của x để khoảng cách này lớn nhất. + Cho hàm số y = (x + 1)/(2x – 1) có đồ thị (C). Viết phương trình tiếp tuyến (d) của đồ thị (C) biết (d) cắt trục Ox, Oy lần lượt tại A, B sao cho AB = OA√10 (với O là gốc tọa độ).
Đề thi học sinh giỏi lớp 12 môn Toán năm 2019 sở GD ĐT TP Hồ Chí Minh
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán năm 2019 sở GD ĐT TP Hồ Chí Minh Bản PDF Sytu giới thiệu đến bạn đọc nội dung đề thi học sinh giỏi Toán lớp 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh, kỳ thi vừa được diễn ra vào sáng nay (thứ Ba ngày 05 tháng 03 năm 2019), đề thi được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài thi Toán là 120 phút (không kể thời gian giám thị coi thi phát đề). Thông qua kỳ thi chọn HSG Toán lớp 12 này, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (TP. HCM) sẽ tuyển chọn được các em học sinh khối 12 giỏi môn Toán đang sinh sống và học tập trên địa bàn thành phố HCM, qua đó thành lập đội tuyển HSG Toán lớp 12 tham dự kỳ thi HSG Toán THPT cấp Quốc gia năm 2019, ngoài ra, các em đạt giải trong kỳ thi lần này còn được tuyên dương, khen thưởng để làm tấm gương học tập cho các em học sinh khác. [ads] Trích dẫn đề thi học sinh giỏi Toán lớp 12 năm 2019 sở GD&ĐT TP Hồ Chí Minh : + Cho hàm số y = (x^2 – 1)^2 có đồ thị (C). Xét điểm M di chuyển trên (C) và có hoành độ m thuộc (-1;1). Tiếp tuyến của (C) ở M cắt (C) tại hai điểm A, B phân biệt và khác M. Tìm giá trị lớn nhất của từng độ trung điểm I của đoạn thẳng AB. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác vuông cân ở A với BC = 2a và hình chiếu của A’ lên mặt phẳng (ABC) trùng với trung điểm BC. Biết rằng diện tích của tứ giác BCC’B’ bằng 6a^2. a) Tính theo a thể tích của hình lăng trụ đã cho. b) Tính theo a thể tích của hình trụ nhỏ nhất có hai đáy lần lượt nằm trên hai mặt phẳng (ABC), (A’B’C’) và chứa toàn bộ lăng trụ đã cho bên trong. + Cho các số thực a, b, c < (1;+∞) thỏa mãn a^10 ≤ b và log_a b + 2log_b c + 5log_c a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2log_a c + 5log_b c + 10log_b a.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6