Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 9 năm 2016 - 2017 sở GDĐT Ninh Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 THCS cấp tỉnh năm học 2016 – 2017 sở GD&ĐT tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2016 – 2017 sở GD&ĐT Ninh Bình : + Cho phương trình: 2 2 x 2 m 1 x m 2m 1 0 (x là ẩn; m là tham số khác 0). Tìm m để phương trình có hai nghiệm phân biệt 1 2 x ;x thỏa mãn: 2 2 1 2 12 2 1 10 0 x x x x 9m. + Cho đường tròn tâm O, bán kính R có đường kính AB cố định. C là một điểm thay đổi trên đường tròn (C khác A và B). Gọi H là hình chiếu của C trên AB, I là trung điểm của AC. Đường thẳng OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M, đường thẳng MB cắt đường thẳng CH tại K. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn b) Chứng minh MC là tiếp tuyến của đường tròn (O;R) c) Chứng minh IK song song với AB d) Xác định vị trí của điểm C để chu vi tam giác ABC đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó. + Cho a, b, c là các số thực không âm thỏa mãn abc3. Tìm giá trị nhỏ nhất của biểu thức 3 33 Qa b c.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Củ Chi TP HCM
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Củ Chi TP HCM Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 Đề học sinh giỏi môn Toán lớp 9 năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Củ Chi, thành phố Hồ Chí Minh tổ chức. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 12 tháng 11 năm 2022. Đề thi bao gồm các bài toán thú vị như sau: 1. Cho hình vuông ABCD có AB = a, P và Q lần lượt là thuộc các cạnh AB, AD sao cho PCQ = 45°. Chứng minh rằng chu vi APQ = 2a. 2. Cho ABC vuông tại A (AB < AC), đường cao AH, phân giác AD. Trên AC lấy E sao cho AE = AB, BE cắt AH tại I. Chứng minh các điều kiện được đề bài yêu cầu. 3. Cho ABC cân tại A (A nhọn), H là trực tâm. Gọi E là trung điểm của AC. Lấy D trên BC sao cho BC = 3.CD. Chứng minh rằng BE vuông góc HD. Hy vọng đề thi sẽ giúp các em rèn luyện kỹ năng giải bài toán, nâng cao kiến thức và chuẩn bị tốt cho cuộc thi sắc sảo sắc màu sắc đỉnh cao sắc thuộc huyện Củ Chi này. Chúc các em thành công!
Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thanh Trì Hà Nội
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Thanh Trì Hà Nội Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 phòng GD&ĐT Thanh Trì Hà Nội Đề thi học sinh giỏi Toán lớp 9 năm học 2022 - 2023 phòng GD&ĐT Thanh Trì Hà Nội Chào mừng quý thầy, cô giáo và các em học sinh lớp 9, dưới đây là đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào sáng thứ Ba ngày 15 tháng 11 năm 2022. Trích dẫn một số câu hỏi từ Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Thanh Trì - Hà Nội: 1. Tìm tất cả số nguyên tố p có dạng p = a^2 + b^2 + c^2 với a, b, c là các số nguyên dương thỏa mãn (a^4 + b^4 + c^4) chia hết cho p. 2. Cho hình vuông MNPQ. Gọi A là điểm bất kì trên cạnh PQ (điểm A không trùng với hai điểm P, Q). Đường thẳng MA cắt đường thẳng NP tại điểm B. Qua M vẽ đường thẳng vuông góc với MA, cắt đường thẳng PQ tại C. Câu hỏi đưa ra các yêu cầu về tỉ lệ các đoạn thẳng trong hình vuông. 3. Bên trong hình vuông có cạnh bằng 1 lấy n điểm phân biệt. Chứng minh rằng tồn tại một tam giác có đỉnh là đỉnh của hình vuông hoặc n điểm đó sao cho diện tích tam giác đó thỏa mãn một bất đẳng thức cụ thể. Hy vọng rằng đề thi này sẽ giúp các em học sinh rèn luyện và phát triển kỹ năng Toán của mình. Chúc quý thầy, cô giáo và các em học sinh thành công trong kỳ thi!
Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tương Dương Nghệ An Sytu xin gửi đến các thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Tương Dương, tỉnh Nghệ An. Đề thi bao gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài là 150 phút. Trích dẫn một số câu hỏi trong Đề học sinh giỏi huyện Toán lớp 9 năm 2022 – 2023 phòng GD&ĐT Tương Dương – Nghệ An: Với a, b là các số nguyên. Chứng minh rằng nếu 4a2 + 3ab − 11b2 chia hết cho 5 thì a4 − b4 chia hết cho 5. Cho hình vuông ABCD điểm N trên cạnh AB. Gọi E là giao điểm của CN và DA. Kẻ tia Cx vuông góc với CE cắt AB tại F, M là trung điểm của đoạn thẳng EF. Chứng minh rằng: CE = CF ACE = BCM Khi điểm N di chuyển trên cạnh AB (N không trùng với A và B) thì M chuyển động trên một đường thẳng cố định. Cho a, b là hai số dương thỏa mãn a + b >= 1. Tìm giá trị nhỏ nhất của biểu thức: F = (a3 + b3)2 + (a2 + b2) + 3/2ab. Đề thi này đòi hỏi sự tư duy, logic và kiến thức sâu rộng từ các em học sinh. Hy vọng rằng các em sẽ tự tin và thành công trong kì thi sắp tới.
Đề chọn HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quảng Trạch Quảng Bình
Nội dung Đề chọn HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quảng Trạch Quảng Bình Bản PDF - Nội dung bài viết Đề chọn HSG lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Quảng Trạch Quảng Bình Đề chọn HSG lớp 9 môn Toán năm 2022-2023 phòng GD&ĐT Quảng Trạch Quảng Bình Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề kiểm tra định kỳ chọn học sinh giỏi môn Toán lớp 9 năm học 2022-2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình. Kỳ thi sẽ diễn ra vào ngày 11 tháng 11 năm 2022. Đề thi gồm các bài toán sau: 1. Cho tam giác ABC vuông tại A có đường cao AH (AB < AC và H thuộc BC). Trên tia HC lấy điểm D sao cho HA = HD. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) Chứng minh rằng BEC và ADC đồng dạng, từ đó suy ra số đo góc AEB. b) Gọi M là trung điểm của BE. Tính số đo góc AHM. c) Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC). 2. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn (O) tại D. a) Chứng minh các điểm B, C, E, F thuộc một đường tròn. b) Gọi M là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của tam giác ABC. 3. Cho n là số nguyên dương. Chứng minh rằng nếu 2n + 1 và 3n + 1 là các số chính phương thì 5n + 3 không phải là số nguyên tố. Đây là những bài toán đa dạng, đòi hỏi sự tư duy logic và khả năng suy luận của các em học sinh. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới!

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6