Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 10 năm 2019 - 2020 trường THPT Trần Phú - Hà Tĩnh

Nhằm tuyển chọn các em học sinh khối lớp 10 có thành tích học tập môn Toán xuất sắc vào đội tuyển học sinh giỏi Toán 10 của nhà trường, vừa qua, trường THPT Trần Phú – Hà Tĩnh tổ chức kỳ thi chọn học sinh giỏi Toán 10 cấp trường năm học 2019 – 2020. Đề thi chọn HSG Toán 10 năm 2019 – 2020 trường THPT Trần Phú – Hà Tĩnh được biên soạn theo hình thức tự luận, đề gồm có 01 trang với 05 bài toán, thời gian làm bài 120 phút, đề thi có lời giải chi tiết (lời giải được biên soạn bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi chọn HSG Toán 10 năm 2019 – 2020 trường THPT Trần Phú – Hà Tĩnh : + Cho hàm số y = (m – 2)x^2 – 2(m – 1)x + m + 2 (m là tham số). a) Biết đồ thị là một đường parabol có tung độ đỉnh bằng 3m. Xác định giá trị của m . b) Tìm m để hàm số nghịch biến trên khoảng (-∞;2). + Trong hệ tọa độ Oxy, cho hình thang ABCD có hai cạnh bên AB và CD cắt nhau tại điểm M, tọa độ điểm A(-2;-2), B(0;4) và C(7;3). a) Tìm tọa độ điểm E để EA + EB + 2EC = 0 và tìm giá trị nhỏ nhất của |PA + PB [ads] + 2PC| biết P là điểm di động trên trục hoành. b) Biết diện tích hình thang ABCD gấp 3 lần diện tích tam giác MBC. Tìm tọa độ đỉnh D. + Cho tam giác ABC đều cạnh 3a. Lấy các điểm M, N lần lượt trên các cạnh BC, CA sao cho BM = a, CN = 2a. a. Tìm giá trị của tích vô hướng AM.BC theo a. b. Gọi P là điểm nằm trên cạnh AB sao cho AM vuông góc với PN. Tính độ dài PN theo a.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề chọn đội tuyển HSG Toán 10 năm 2021 - 2022 trường THPT chuyên Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chọn đội tuyển học sinh giỏi môn Toán 10 năm học 2021 – 2022 trường THPT chuyên Bến Tre, tỉnh Bến Tre. Trích dẫn đề chọn đội tuyển HSG Toán 10 năm 2021 – 2022 trường THPT chuyên Bến Tre : + Trong hình vuông có độ dài cạnh bằng 4, cho trước 33 điểm, trong đó không có ba điểm nào thẳng hàng. Người ta vẽ các đường tròn bán kính đều bằng 2 và có tâm tại các điểm đã cho. Hỏi có hay không ba điểm trong số các điểm đã cho cùng thuộc vào phần chung của ba hình tròn có tâm cũng chính là ba điểm đó. + Cho dãy số (un) được xác định bởi. Tìm công thức của số hạng tổng quát un theo n. + Cho tam giác ABC nhọn, không cân và có các đường cao AH, BM, CN. Gọi D là chân đường phân giác trong của góc A và E, F lần lượt là hình chiếu của D lên các cạnh AB, АС. a. Chứng minh b. Chứng minh rằng các đường thẳng MN, EF, BC đồng quy.
Đề HSG Toán 10 năm 2021 - 2022 trường chuyên Lương Thế Vinh - Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi lớp 10 môn Toán chuyên năm học 2021 – 2022 trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề HSG Toán 10 năm 2021 – 2022 trường chuyên Lương Thế Vinh – Đồng Nai : + Biết rằng phương trình x3 – ax2 + bx – c = 0 có 3 nghiệm nguyên phân biệt, chứng minh rằng phương trình x2 – 2ax + 3b = 0 cũng có 2 nghiệm phân biệt là m và n. + Cho abc là một số nguyên tố có ba chữ số. Chứng minh phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. + Một nhóm học sinh gồm sáu em, trong đó có hai em lớp A, hai em lớp B và hai em lớp C. Mỗi ngày một lần, các em xếp thành một hàng dọc sao cho chỉ có đúng một cặp hai em cùng lớp đứng cạnh nhau. Biết rằng không có hai ngày có cách xếp giống nhau, vậy các em có thể xếp được nhiều nhất bao nhiêu ngày?
Đề HSG lớp 10 11 môn Toán năm 2021 - 2022 trường chuyên Nguyễn Huệ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi lớp 10 & lớp 11 môn Toán năm học 2021 – 2022 trường THPT chuyên Nguyễn Huệ, thành phố Hà Nội. Trích dẫn đề HSG lớp 10 & 11 môn Toán năm 2021 – 2022 trường chuyên Nguyễn Huệ – Hà Nội : + Có bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau mà mỗi chữ số lẻ xuất hiện đúng một lần và ba chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần. + Cho tam giác ABC và điểm P thuộc miền trong tam giác ABC. Lấy điểm Q sao cho các đường thẳng AQ, BQ, CQ lần lượt đối xứng với các đường thẳng AP, BP, CP qua đường phân giác trong của các góc A, B, C. Gọi M, N lần lượt là hình chiếu của P lên AB, AC; K, L lần lượt là hình chiếu của Q lên AB, AC. a) Chúng minh rằng các điểm M, N, K, L cùng thuộc một đường tròn. Tìm tâm của đường tròn đó. b) Gọi T là giao điểm của MN và KL.Chứng minh rằng AT vuông góc PQ. + Giả sử a b c là các số thực không âm thỏa mãn a2 + b2 + c2 = 3. Chứng minh?
Đề khảo sát đội tuyển Toán 10 lần 2 năm 2021 - 2022 trường THPT Trần Phú - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát đội tuyển học sinh giỏi môn Toán 10 lần 2 năm học 2021 – 2022 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát đội tuyển Toán 10 lần 2 năm 2021 – 2022 trường THPT Trần Phú – Vĩnh Phúc : + Cho tứ giác ABCD. Gọi M N P Q lần lượt là trung điểm của AB BC CD DA. Gọi O là giao điểm của MP và NQ, G là trọng tâm của tam giác BCD. Chứng minh rằng ba điểm A O G thẳng hàng. + Cho tam giác ABC là tam giác đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức T MA MB MC MA MB MC. + Cho tứ giác lồi ABCD có AC BD và nội tiếp đường tròn tâm O bán kính R 1010. Đặt diện tích tứ giác ABCD bằng S và AB a BC b CD c DA d. Tính giá trị biểu thức.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6