Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề vectơ trong không gian, quan hệ vuông góc - Nguyễn Chín Em

Tài liệu gồm 671 trang được biên soạn bởi thầy Nguyễn Chín Em tóm tắt lý thuyết, phân dạng và hướng dẫn giải các bài toán thuộc các chủ đề: vectơ trông không gian, hai đường thẳng vuông góc, đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc, khoảng cách … trong chương trình Hình học 11 chương 3: vectơ trong không gian, quan hệ vuông góc. Khái quát nội dung tài liệu chuyên đề vectơ trong không gian, quan hệ vuông góc – Nguyễn Chín Em: CHỦ ĐỀ 1 . VEC-TƠ TRONG KHÔNG GIAN A TÓM TẮT LÝ THUYẾT 1 Các định nghĩa. 2 Các quy tắc tính toán với véc-tơ. 3 Một số hệ thức véc-tơ trọng tâm cần nhớ. 4 Điều kiện đồng phẳng của ba véc-tơ. 5 Phân tích một véc-tơ theo ba véc-tơ không đồng phẳng. 6 Tích vô hướng của hai véc-tơ. B CÁC DẠNG TOÁN Dạng 1. Xác định véc-tơ và các khái niệm có liên quan. Dạng 2. Chứng minh đẳng thức véc-tơ. Dạng 3. Tìm điểm thỏa mãn đẳng thức véc-tơ. Dạng 4. Tích vô hướng của hai véc-tơ. Dạng 5. Chứng minh ba véc-tơ đồng phẳng. Dạng 6. Phân tích một véc-tơ theo 3 véc-tơ không đồng phẳng cho trước. Dạng 7. Ứng dụng véc-tơ chứng minh bài toán hình học. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC A TÓM TẮT LÝ LÝ THUYẾT 1 Tích vô hướng của hai véc-tơ trong không gian. 2 Góc giữa hai đường thẳng. B CÁC DẠNG TOÁN Dạng 1. Xác định góc giữa hai véc-tơ. Dạng 2. Xác định góc giữa hai đường thẳng trong không gian. Dạng 3. Sử dụng tính chất vuông góc trong mặt phẳng. Dạng 4. Hai đường thẳng song song cùng vuông góc với một đường thẳng thứ ba. C CÂU HỎI TRẮC NGHIỆM [ads] CHỦ ĐỀ 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG A TÓM TẮT LÝ THUYẾT 1 Định nghĩa. 2 Điều kiện để đường thẳng vuông góc với mặt phẳng. 3 Tính chất. 4 Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng. 5 Phép chiếu vuông góc và định lý ba đường vuông góc. B CÁC DẠNG TOÁN Dạng 1. Đường thẳng vuông góc với mặt phẳng. Dạng 2. Góc giữa đường thẳng và mặt phẳng. Dạng 3. Xác định thiết diện của một khối đa diện cắt bởi mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 4 . HAI MẶT PHẲNG VUÔNG GÓC A TÓM TẮT LÝ THUYẾT 1 Định nghĩa góc giữa hai mặt phẳng. 2 Cách xác định góc của hai mặt phẳng cắt nhau. 3 Diện tích hình chiếu của một đa giác. 4 Hai mặt phẳng vuông góc. 5 Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương. 6 Hình chóp đều và hình chóp cụt đều. B CÁC DẠNG TOÁN Dạng 1. Tìm góc giữa hai mặt phẳng. Dạng 2. Tính diện tích hình chiếu của đa giác. Dạng 3. Chứng minh hai mặt phẳng vuông góc. Dạng 4. Thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 5 . KHOẢNG CÁCH A TÓM TẮT LÝ THUYẾT 1 Khoảng cách từ một điểm đến một đường thẳng. 2 Khoảng cách từ một điểm tới một mặt phẳng. 3 Khoảng cách từ một đường thẳng tới một mặt phẳng song song. 4 Khoảng cách giữa hai mặt phẳng song song. 5 Đường thẳng vuông góc chung và khoảng cách giữa hai đường thẳng chéo nhau. B CÁC DẠNG TOÁN Dạng 1. Khoảng cách từ một điểm tới một đường thẳng. Dạng 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng 3. Khoảng cách giữa đường và mặt song song – Khoảng cách giữa hai mặt song song. Dạng 4. Đoạn vuông góc chung – Khoảng cách giữa hai đường thẳng chéo nhau. C CÂU HỎI TRẮC NGHIỆM

Nguồn: toanmath.com

Đăng nhập để đọc

Phương pháp giải toán Hình học 11 chương 3 Quan hệ vuông góc - Nguyễn Ngọc Dũng
Tài liệu gồm 86 trang trình bày phương pháp giải các dạng toán và bài tập tự luận – trắc nghiệm có đáp án chủ đề Quan hệ vuông góc trong chương trình Hình học 11 chương 3. Nội dung tài liệu : Bài 1. Đường thẳng vuông góc với đường thẳng. Đường thẳng vuông góc với mặt phẳng I. Tóm tắt lý thuyết   1. Đường thẳng vuông góc với đường thẳng. Đường thẳng vuông góc với mặt phẳng 2. Mặt phẳng trung trực của đoạn thẳng II. Các dạng toán + Dạng 1: Đường vuông góc đường. Đường vuông góc mặt + Dạng 2: Góc giữa đường thẳng và mặt phẳng Bài 2. Hai mặt phẳng vuông góc I. Tóm tắt lý thuyết   1. Hai mặt phẳng vuông góc 2. Các định lý quan trọng 3. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương 4. Hình chóp đều và hình chóp cụt đều 5. Trục của đường tròn ngoại tiếp tam giác II. Các dạng toán + Dạng 1: Hai mặt phẳng vuông góc + Dạng 2: Góc giữa hai mặt phẳng Bài 3. Khoảng cách  I. Tóm tắt lý thuyết 1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng 2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song 3. Khoảng cách giữa hai đường thẳng chéo nhau II. Các dạng toán + Dạng 1: Khoảng cách từ một điểm đến một mặt phẳng + Dạng 2: Khoảng cách giữa hai đường thẳng chéo nhau Bài 4. Diện tích hình chiếu  Bài 5. Ôn tập Hình học 11 chương 3 [ads] Tài liệu được trình bày bằng LaTex rất đẹp, bạn đọc có thể xem thêm các tài liệu khác của thầy Nguyễn Ngọc Dũng sau đây: + Đường thẳng và mặt phẳng trong không gian, quan hệ song song – Nguyễn Ngọc Dũng (Hình học 11 chương 2) + 100 bài tập trắc nghiệm rèn luyện kỹ năng đọc bảng biến thiên và đồ thị của hàm số – Nguyễn Ngọc Dũng (Giải tích 12 chương 1) + Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit – Nguyễn Ngọc Dũng (Giải tích 12 chương 2) + Bài tập trắc nghiệm mặt nón, mặt trụ, mặt cầu có đáp án – Nguyễn Ngọc Dũng (Hình học 12 chương 2) Xem thêm các tài liệu hay về chủ đề quan hệ vuông góc: + Phân dạng và hướng dẫn giải bài toán quan hệ vuông góc trong không gian – Đặng Việt Đông (235 trang) + Chuyên đề vector trong không gian, quan hệ vuông góc – Nguyễn Bảo Vương (165 trang)
Phân dạng và hướng dẫn giải bài toán quan hệ vuông góc trong không gian - Đặng Việt Đông
Tài liệu gồm 235 trang phân dạng, hướng dẫn phương pháp giải và tuyển tập các bài toán trắc nghiệm chủ đề quan hệ vuông góc trong không gian (Hình học 11) có đáp án kèm lời giải chi tiết. Các dạng toán gồm: Véctơ trong không gian Hai đường thẳng vuông góc + Dạng 1. Tính góc giữa hai đường thẳng + Dạng 2. Chứng minh hai đường thẳng vuông góc và các bài toán liên quan Đường thẳng vuông góc với mặt phẳng + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng và đường thẳng vuông góc đường thẳng + Dạng 2. Tính góc giữa đường thẳng và mặt phẳng + Dạng 3. Thiết diện và các bài toán liên quan [ads] Hai mặt phẳng vuông góc + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Chứng minh hai mặt phẳng vuông góc, chứng minh đường thẳng vuông góc với mặt phẳng và các bài toán liên quan + Dạng 3. Tính độ dài đoạn thẳng, diện tích hình chiếu, chu vi và diện tích đa giác + Dạng 4. Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng Khoảng cách + Dạng 1. Tính khoảng cách từ điểm m đến đường thẳng δ + Dạng 2. Tính khoảng cách từ một điểm đến đường thẳng, mặt phẳng + Dạng 3. Khoảng cách giữa đường thẳng và mặt phẳng song song + Dạng 4. Khoảng cách giữa hai mặt phẳng song song + Dạng 5. Khoảng cách giữa hai đường thẳng chéo nhau
Chuyên đề vector trong không gian, quan hệ vuông góc - Nguyễn Bảo Vương
Tài liệu gồm 165 trang gồm lý thuyết, ví dụ mẫu có lời giải chi tiết và bài tập trắc nghiệm chuyên đề vector trong không gian, quan hệ vuông góc. Tập 1. Vectơ trong không gian A. Tóm tắt sách giáo khoa B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Chứng minh đẳng thức vectơ Bài toán 02: Chứng minh ba vectơ đồng phẳng và bốn điểm đồng phẳng Bài toán 03: Tính độ dài của đoạn thẳng Bài toán 04: Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian Các bài toán luyện tập Tập 2. Góc giữa hai đường thẳng. Hai đường thẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính góc giữa hai đường thẳng Bài toán 02: Dùng tích vô hướng để chứng minh hai đường thẳng vuông góc Các bài toán luyện tập [ads] Tập 3. Đường thẳng và mặt phẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Chứng minh đường thẳng vuông góc với mặt phẳng Bài toán 02: Thiết diện đi qua một điểm và vuông góc với một đường thẳng Bài toán 03: Tính góc gữa đường thẳng và mặt phẳng Bài toán 04: Tìm tập hợp hình chiếu của một điểm trên một đường thẳng hay một mặt phẳng di động Các bài toán luyện tập Tập 4. Hai mặt phẳng vuông góc – khoảng cách Hai mặt phẳng vuông góc A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính góc giữa hai mặt phẳng Bài toán 02: Chứng minh hai mặt phẳng vuông góc Bài toán 03: Ứng dụng công thức hình chiếu Bài toán 04: Xác định thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng Khoảng cách A. Chuẩn kiến thức B. Luyện kĩ năng giải các dạng bài tập Bài toán 01: Tính khoảng cách từ điểm đến đường thẳng Bài toán 02: Tính khoảng cách từ một điểm đến một mặt phẳng Bài toán 03: Khoảng cách giữa hai đường thẳng chéo nhau Bài toán 04: Ứng dụng phép chiếu vuông góc để tính khoảng cách giữa hai đường thẳng chéo nhau Các bài toán luyện tập Tập 5. 280 bài tập trắc nghiệm tự luyện Tổng hợp lần 1. Chương III. Quan hệ vuông góc Đáp án Tổng hợp lần 2. Chương III: Vectơ trong không gian Bài 1: Vectơ trong không gian Bài 2: Hai đường thẳng vuông góc Bài 3: Đường thẳng vuông góc với mặt phẳng Bài 4: Hai mặt phẳng vuông góc Bài 5: Khoảng cách Tổng hợp lần 3. Chương 3. Vectơ – quan hệ vuông góc Đáp án
Bài toán khoảng cách trong không gian - Phạm Hồng Phong
Tài liệu gồm 14 trang hướng dẫn phương pháp xác định và tính khoảng cách trong không gian và các ví dụ áp dụng có hướng dẫn giải. A. Tóm tắt lý thuyết Loại 1. Khoảng cách từ điểm đến mặt phẳng, một đường thẳng Định nghĩa: Khoảng cách từ một điểm đến mặt phẳng (hoặc đường thẳng) bằng khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng (hoặc đường thẳng). Bài toán cơ bản: Nhiều bài toán tính khoảng cách từ điểm tới mặt phẳng, từ điểm tới đường thẳng có thể quy về bài toán cơ bản sau: Cho hình chóp S.ABC có SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) và khoảng cách từ điểm S đến đường thẳng BC. [ads] Loại 2. Khoảng cách giữa hai đường thẳng chéo nhau. Đường vuông góc chung của hai đường thẳng Định nghĩa: Cho hai đường thẳng chéo nhau a và b: + Đường thẳng d cắt a, b và vuông góc với a, b được gọi là đường vuông góc chung của a và b. + Nếu đường vuông góc chung cắt a, b lần lượt tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau + Phương pháp tổng quát: Cho hai đường thẳng chéo nhau a, b . Gọi (α) là mặt phẳng chứa b và song song với a, a ‘ là hình chiếu vuông góc của a lên (α). Đặt N = a’ ∩ b, gọi Δ là đường thẳng qua N và vuông góc với (α) ⇒ Δ là đường vuông góc chung của a và b. Đặt M = Δ ∩ a ⇒ khoảng cách giữa a và b là độ dài đường thẳng MN. + Trường hợp đặc biệt: Cho hai đường thẳng chéo nhau và vuông góc với nhau a, b . Gọi (α) là mặt phẳng chứa b và vuông góc với a. Đặt M = a ∩ (α). Gọi N là chân đường vuông góc hạ từ M xuống b ⇒ MN là đường vuông góc chung của a, b và khoảng cách giữa a, b là độ dài đoạn thẳng MN. Nhận xét: Cho hai đường thẳng chéo nhau a và b. Các nhận xét nhau đây cho ta cách khác để tính khoảng cách giữa a và b ngoài cách dựng đường vuông góc chung: + Nếu (α) là mặt phẳng chứa a và song song với b thì khoảng cách giữa hai đường thẳng bằng khoảng cách giữa b và (α). + Nếu (α), (β) là các mặt phẳng song song với nhau, lần lượt chứa a, b thì khoảng cách giữa hai đường thẳng bằng khoảng cách giữa (α) và (β) B. Một số ví dụ C. Bài tập

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6