Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Kiên Giang

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 2023 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra trong hai ngày 30 và 31 tháng 08 năm 2022. Trích dẫn đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Kiên Giang : + Cho dãy đa thức (Pn(x)) xác định bởi: P0(x) = x3 – 4x và Pn+1(x) = Pn(1 + x).Pn(1 – x) – 1 với mọi số tự nhiên n và mọi x thuộc R. a) Tính P2022(2). b) Chứng minh rằng, tồn tại một đa thức Q(x) với hệ số nguyên sao cho P2022(x) = x2023.Q(x) với mọi x thuộc R. + Cho số nguyên n >= 2. Xét m là một số nguyên dương sao cho tồn tại một tập hợp T thoả mãn đồng thời các tính chất sau đây: Mỗi phần tử của T là một tập con m phần tử của tập {1; 2; 3; …; mn). Mỗi cặp phần tử của T có không quá 1 phần tử chung. Mỗi phần tử của tập {1; 2; 3; …; mn} thuộc đúng hai phần tử của T. Tìm giá trị lớn nhất có thể của m. + Cho tam giác không cân ABC nội tiếp đường tròn (O). Đường tròn ngoại tiếp tam giác BOC cắt AB và AC tương ứng tại Ab và Ac; đường tròn ngoại tiếp tam giác COA cắt BA và BC tương ứng tại Ba và Bc; và đường tròn ngoại tiếp tam giác AOB cắt CA và CB tương ứng tại Ca và Cb (các điểm Ab, Ac, Ba, Bc, Ca, Cb không trùng với các đỉnh của tam giác ABC). Các cặp đường thẳng (BcBa;CaCb), (CaCb;AbAc), (AbAc;BcBa) lần lượt có các giao điểm là X, Y, Z. Chứng minh rằng: a) Các điểm O, Ba, Ca thẳng hàng. b) Đường tròn ngoại tiếp tam giác XYZ tiếp xúc với (O).

Nguồn: sytu.vn

Đăng nhập để đọc

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 30/08/2023 và 31/08/2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Cho tam giác nhọn ABC (với AB < AC) nội tiếp đường tròn (O), có I là tâm đường tròn nội tiếp. Đường tròn bàng tiếp góc A của tam giác ABC có tâm là J và tiếp xúc với đường thẳng BC tại điểm D. Gọi E, F theo thứ tự là trung điểm của ID, JD. Đường tròn có đường kính là AF cắt đường tròn (O) tại điểm thứ hai G khác A. Chứng minh rằng: IDB = AGE. + Cho số nguyên dương n và một bảng ô vuông (2n + 1) × (2n + 1). Tìm số nguyên dương k lớn nhất sao cho: có thể đặt k viên bi vào k ô của bảng đã cho, mỗi ô không quá 1 viên bi và đồng thời trong mỗi bảng con 2 × 2 của bảng ô vuông đã cho luôn có không quá 2 viên bi. + Cho tam giác nhọn ABC (với AB < AC) nội tiếp đường tròn (O) và có trực tâm là H. Gọi M là điểm chính giữa cung BAC của đường tròn (O). Đường thẳng qua O song song với AM cắt HM tại K. Gọi E, F tương ứng là hình chiếu vuông góc của K trên AC, AB. Gọi N là trung điểm HM. Chứng minh rằng: a) B, C, O, K cùng nằm trên một đường tròn. b) K, E, N, F là các đỉnh của một hình bình hành.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Có 30 tấm thẻ được đánh số lần lượt từ 1 đến 30. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để tích của hai số được đánh trên hai tấm thẻ chọn ra là một số chia hết cho 4. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60°. a. Tính thể tích khối chóp S.ABC. b. Tính côsin của góc tạo bởi đường thẳng AB và mặt phẳng (SBC). + Chứng minh rằng tồn tại số nguyên dương m sao cho với mọi số nguyên x, y thì 3×2 + 5xy + y2 – m không chia hết cho 13.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 04 tháng 11 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Phước : + Gọi S là tập hợp các số tự nhiên có 5 chữ số đôi một khác nhau và các chữ số này được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn là số chẵn trong đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp tứ giác đều S.ABCD có O là giao điểm của AC và BD. Biết SO a 2 góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 0 45. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi K là điểm di động trong mặt phẳng (ABCD). Tìm SAK để biểu thức SA AK T SK đạt giá trị lớn nhất. + Cho hình trụ có đường kính đáy bằng 4 5. Một mặt phẳng không vuông góc với đáy và cắt hai đáy theo hai dây cung song song MN M N thoả mãn MN M N 8 4. Biết rằng tứ giác MNN M có diện tích bằng 54. Tính thể tích khối trụ đã cho.
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023 - 2024 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 GDTX cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 25 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hải Dương : + Lấy ngẫu nhiên 3 viên bi từ một hộp có 3 viên bi vàng, 4 viên bi đỏ, 5 viên bi xanh, 6 viên bi trắng. Tính xác suất để 3 viên bi lấy ra có ít nhất 2 màu. Trong mặt phẳng toạ độ Oxy cho điểm A(1;3). Viết phương trình đường tròn tâm A và đi qua B(-1;4). + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AB a BC a 3. a) Tính thể tích khối chóp S.ABC theo a. b) Gọi M là trung điểm AC. Tính khoảng cách từ M đến mặt phẳng (SBC). + Một người đàn ông muốn xây bể bơi cho trẻ em có thể tích 3 18m và thiết kế bể là hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng. Tính độ sâu của bể để diện tích gạch lát đáy và thành bể nhỏ nhất.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6