Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp

Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu

Nguồn: toanmath.com

Đăng nhập để đọc

Các dạng toán trắc nghiệm phương pháp tọa độ trong mặt phẳng
Tài liệu gồm 112 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết các chủ đề: phương trình đường thẳng, phương trình đường tròn, phương trình Elip … trong chương trình Hình học 10 chương 3: phương pháp tọa độ trong mặt phẳng Oxy. Mục lục tài liệu các dạng toán trắc nghiệm phương pháp tọa độ trong mặt phẳng: Chủ đề 1 . Phương trình đường thẳng trong mặt phẳng tọa độ Oxy. A. Câu hỏi và bài tập trắc nghiệm Dạng toán 1. Xác định véctơ chỉ phương, véc tơ pháp tuyến của đường thẳng, hệ số góc của đường thẳng (Trang 2). Dạng toán 2. Viết phương trình đường thẳng và các bài toán liên quan (Trang 5). + Viết phương trình đường thẳng khi biết vectơ pháp tuyến (VTPT) hoặc vectơ chỉ phương (VTCP), hệ số góc và một điểm đi qua (Trang 5). + Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước (Trang 6). + Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (Trang 9). + Phương trình đường cao của tam giác (Trang 9). + Phương trình đường trung tuyến của tam giác (Trang 10). + Phương trình cạnh của tam giác (Trang 10). + Phương trình đường phân giác của tam giác (Trang 10). Dạng toán 3. Vị trí tương đối của hai đường thẳng (Trang 12). Dạng toán 4. Góc của hai đường thẳng (Trang 15). + Tính góc của hai đường thẳng cho trước (Trang 15). + Viết phương trình đường thẳng liên quan đến góc (Trang 17). Dạng toán 5. Khoảng cách (Trang 18). + Tính khoảng cách từ một điểm đến đường thẳng cho trước (Trang 18). + Phương trình đường thẳng liên quan đến khoảng cách (Trang 20). Dạng toán 6. Xác định điểm. + Xác định tọa hình chiếu, điểm đối xứng (Trang 22). + Xác định điểm liên quan đến yếu tố khoảng cách, góc (Trang 22). + Xác định điểm liên quan đến yếu tố cực trị (Trang 24). + Một số bài toán tổng hợp (Trang 25). Dạng toán 7. Một số bài toán liên quan đến diện tích (Trang 28). B. Đáp án và lời giải chi tiết Dạng toán 1. Xác định véctơ chỉ phương, véc tơ pháp tuyến của đường thẳng, hệ số góc của đường thẳng (Trang 29). Dạng toán 2. Viết phương trình đường thẳng và các bài toán liên quan (Trang 31). + Viết phương trình đường thẳng khi biết vectơ pháp tuyến (VTPT) hoặc vectơ chỉ phương (VTCP), hệ số góc và một điểm đi qua (Trang 31). + Viết phương trình đường thẳng đi qua một điểm vuông góc hoặc với đường thẳng cho trước (Trang 32). + Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (Trang 35). + Phương trình đường cao của tam giác (Trang 35). + Phương trình đường trung tuyến của tam giác (Trang 36). + Phương trình cạnh của tam giác (Trang 36). + Phương trình đường phân giác của tam giác (Trang 37). Dạng toán 3. Vị trí tương đối của hai đường thẳng (Trang 39). Dạng toán 4. Góc của hai đường thẳng (Trang 44). + Tính góc của hai đường thẳng cho trước (Trang 44). + Viết phương trình đường thẳng liên quan đến góc (Trang 46). Dạng toán 5. Khoảng cách (Trang 49). + Tính khoảng cách từ một điểm đến đường thẳng cho trước (Trang 49). + Phương trình đường thẳng liên quan đến khoảng cách (Trang 51). Dạng toán 6. Xác định điểm (Trang 53). + Xác định tọa hình chiếu, điểm đối xứng (Trang 53). + Xác định điểm liên quan đến yếu tố khoảng cách, góc (Trang 55). + Xác định điểm liên quan đến yếu tố cực trị (Trang 57). + Một số bài toán tổng hợp (Trang 59). Dạng toán 7. Một số bài toán liên quan đến diện tích (Trang 70). [ads] Chủ đề 2 . Phương trình đường tròn trong mặt phẳng tọa độ Oxy. A. Câu hỏi và bài tập trắc nghiệm Dạng toán 1. Nhận dạng phương trình đường tròn (Trang 1). Dạng toán 2. Tìm tọa độ tâm, bán kính đường tròn (Trang 2). Dạng toán 3. Viết phương trình đường tròn (Trang 2). + Khi biết tâm và bán kính (Trang 2). + Khi biết các điểm đi qua (Trang 3). + Sử dụng điều kiện tiếp xúc (Trang 4). Dạng toán 4. Tương giao của đường thẳng và đường tròn (Trang 5). + Phương trình tiếp tuyến (Trang 5). + Bài toán tương giao (Trang 6). Dạng toán 5. Câu hỏi liên quan đến GTLN – GTNN (Trang 8). B. Đáp án và lời giải chi tiết Dạng toán 1. Nhận dạng phương trình đường tròn (Trang 9). Dạng toán 2. Tìm tọa độ tâm, bán kính đường tròn (Trang 10). Dạng toán 3. Viết phương trình đường tròn (Trang 11). + Khi biết tâm và bán kính (Trang 11). + Khi biết các điểm đi qua (Trang 11). + Sử dụng điều kiện tiếp xúc (Trang 13). Dạng toán 4. Tương giao của đường thẳng và đường tròn (Trang 15). + Phương trình tiếp tuyến (Trang 15). + Bài toán tương giao (Trang 18). Dạng toán 5. Câu hỏi liên quan đến GTLN – GTNN (Trang 24). Chủ đề 3 . Phương trình elip trong mặt phẳng tọa độ Oxy. A. Câu hỏi và bài tập trắc nghiệm Dạng toán 1. Tìm các yếu tố của elip (Trang 1). Dạng toán 2. Viết phương trình elip (Trang 2). Dạng toán 3. Các bài toán liên quan khác (Trang 3). B. Đáp án và lời giải chi tiết Dạng toán 1. Tìm các yếu tố của elip (Trang 4). Dạng toán 2. Viết phương trình elip (Trang 6). Dạng toán 3. Các bài toán liên quan khác (Trang 8).
Trắc nghiệm hình giải tích Oxy chính thức và dự bị qua các kỳ thi của BGD (2002 - 2016)
Tài liệu gồm 93 trang tuyển tập các bài toán trắc nghiệm hình giải tích Oxy chính thức và dự bị qua các kỳ thi của BGD từ năm 2002 đến năm 2016, các bài toán được phân tích và giải chi tiết nhằm làm tư liệu học tập Hình học 10 chương 3 cho học sinh khối 10 và tư liệu ôn tập kỳ thi THPT Quốc gia môn Toán cho học sinh khối 12, tài liệu được tổng hợp và biên soạn bởi tập thể quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Trích dẫn tài liệu trắc nghiệm hình giải tích Oxy chính thức và dự bị qua các kỳ thi của BGD (2002 – 2016) : + Trong mặt phẳng tọa độ Oxy, cho điểm A(2;1). Lấy điểm B thuộc trục Ox có hoành độ không âm và điểm C thuộc trục Oy có tung độ không âm sao cho tam giác ABC vuông tại A. Biết rằng khi điểm B có hoành độ là b và điểm C có tung độ là c thì tam giác ABC có diện tích lớn nhất. Tính S = b + c. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có điểm C thuộc đường thẳng d: 2x + y + 5 = 0 và A(-4;8). Gọi M là điểm đối xứng của B qua C, N là hình chiếu vuông góc của B trên đường thẳng MD. Tìm tọa độ các điểm B và C, biết N(5;-4). + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm M(2;0) là trung điểm cạnh AB.Đường trung tuyến và đường cao qua đỉnh A lần lượt có phương trình là 7x – 2y – 3 = 0 và 6x – y – 4 = 0. Viết phương trình đường thẳng AC.
Các dạng toán phương pháp tọa độ trong mặt phẳng - Trần Quốc Nghĩa
Tài liệu gồm 140 trang bao gồm tóm tắt lý thuyết, các dạng toán, hướng dẫn giải và bài tập trắc nghiệm có đáp án chủ đề phương pháp tọa độ trong mặt phẳng trong chương trình Hình học 10 chương 3. Tài liệu được biên soạn bởi thầy Trần Quốc Nghĩa. Các dạng toán được đề cập trong tài liệu : Vấn đề 1 . ĐƯỜNG THẲNG Dạng 1. Chuyển đổi PTTQ ↔ PTTS ↔ PTCT Dạng 2. Vị trí tương đối: đường – đường, điểm – đường Dạng 3. Viết phương trình đường thẳng (dạng cơ bản) Dạng 4. Phương trình đoạn chắn Dạng 5. Khoảng cách – Góc Dạng 6. Cách lập phương trình đường thẳng liên quan đến góc và khoảng cách Dạng 7. Tìm hình chiếu và điểm đối xứng Dạng 8. Phương trình đường thẳng đối xứng Dạng 9. Bài toán phân giác Dạng 10. Bài toán tìm điểm trên đường thẳng, ứng dụng của phương trình tham số Dạng 11. Giải các bài toán về đường trong tam giác Dạng 12. Giải các bài toán về đường thẳng liên quan đến tứ giác Dạng 13. Diện tích tam giác Dạng 14. Tìm điểm M trên đường d thỏa điều kiện Dạng 15. Tìm GTNN của hàm số Dạng 16. Phương trình đường thẳng có tham số [ads] Vấn đề 2 . ĐƯỜNG TRÒN Dạng 1. Phương trình đường tròn (C) Dạng 2. Lập phương trình đường tròn (C) Dạng 3. Vị trí tương đối giữa đường thẳng và đường tròn Dạng 4. Vị trí tương đối giữa hai đường tròn Dạng 5. Tiếp tuyến với đường tròn Vấn đề 3 . ELIP Dạng 1. Xác định các yếu tố của elip Dạng 2. Lập phương trình elip Dạng 3. Tìm điểm trên elip – Tương giao Vấn đề 4 . TRÍCH ĐỀ ĐH-CĐ NHỮNG NĂM QUA 
Phương trình đường thẳng Oxy - Nguyễn Bảo Vương
Tài liệu gồm 70 trang do thầy Nguyễn Bảo Vương biên soạn trình bày lý thuyết, dạng toán và bài tập tự luận, trắc nghiệm chủ đề phương trình đường thẳng trong chương trình Hình học 10 chương 3 (Phương pháp tọa độ trong mặt phẳng Oxy). Các bài tập có đáp án và hướng dẫn giải. Nội dung tài liệu : A. TÓM TẮT LÝ THUYẾT 1. Vectơ pháp tuyến và phương trình tổng quát của đường thẳng 2. Vectơ chỉ phương và phương trình tham số của đường thẳng 3. Vị trí tương đối của hai đường thẳng [ads] B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Viết phương trình tổng quát của đường thẳng Dạng 2: Viết phương trình tham số và chính tắc của đường thẳng Dạng 3: Xét vị trí tương đối của hai đường Dạng 4. Xác định tọa độ điểm thuộc đường thẳng

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6