Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm học 2017 - 2018 sở GD và ĐT Bà Rịa - Vũng Tàu

Đề thi HK1 Toán 11 năm học 2017 – 2018 sở GD và ĐT Bà Rịa – Vũng Tàu gồm 3 trang với 2 phần: + Phần trắc nghiệm: gồm 20 câu hỏi, chiếm 4 điểm, thời gian làm bài 35 phút. + Phần tự luận: gồm 4 câu hỏi, chiếm 6 điểm, thời gian làm bài 55 phút. Bạn đọc có thể tham khảo thêm các đề thi HK1 Toán 11 khác để có sự chuẩn bị cho kỳ thi học kỳ sắp tới.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi HK1 Toán 11 năm 2019 - 2020 trường chuyên Hạ Long - Quảng Ninh
Ngày … tháng 12 năm 2019, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kì thi kiểm tra chất lượng môn Toán khối 11 giai đoạn cuối học kì 1 năm học 2019 – 2020. Đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT chuyên Hạ Long – Quảng Ninh có mã đề 101, đề gồm 05 trang, có 45 câu trắc nghiệm dành cho cho tất cả các thí sinh, 05 câu dành cho học sinh các lớp không phải chuyên Toán và 05 câu cho các thí sinh các lớp chuyên Toán, thời gian học sinh làm bài là 90 phút. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường chuyên Hạ Long – Quảng Ninh : + Mệnh đề nào sau đây sai? A. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì. B. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng đã cho. C. Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng. D. Phép tịnh tiến biến tam giác thành tam giác bằng tam giác đã cho. + Một hình (H) có tâm đối xứng nếu và chỉ nếu: A. Tồn tại phép đối xứng tâm biến hình (H) thành chính nó. B. Tồn tại phép đối xứng trục biến hình (H) thành chính nó. C. Hình (H) là hình bình hành. D. Tồn tại phép dời hình biến hình (H) thành chính nó. [ads] + Cho hình chóp S.ABCD có đáy là hình thang ABCD với AB // CD. Khẳng định nào sau đây sai? A. Hình chóp S.ABCD có bốn mặt bên. B. Giao tuyến của hai mặt phẳng (SAC) và (SBD) là SO (O là giao điểm của AC và BD). C. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là SI (với I là giao điểm của AD và BC). D. Giao tuyến của hai mặt phẳng (SAB) và (SAD) là đường trung bình của ABCD. + Cho tứ diện ABCD. Gọi O là một điểm bên trong tam giác BCD và M là một điểm trên đoạn AO. Gọi I, J là hai điểm trên cạnh BC, BD. Giả sử IJ cắt CD tại K, BO cắt IJ tại E và BO cắt CD tại H, ME cắt AH tại F. Giao tuyến của hai mặt phẳng (MIJ) và (ACD) là đường thẳng? + Trong một lớp có 20 học sinh nữ và 15 học sinh nam. Giáo viên chủ nhiệm cần chọn hai học sinh trong đó có một nam và một nữ đi dự Đại hội Đoàn trường THPT chuyên Hạ Long (Quảng Ninh). Hỏi giáo viên có bao nhiêu cách chọn?
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT An Lạc - TP HCM
Đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT An Lạc – TP HCM gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT An Lạc – TP HCM : + Lấy ngẫu nhiên một thẻ từ một hộp chứa 40 thẻ được đánh số từ 1 đến 40. a) Gọi A là biến cố: “thẻ được lấy ghi số lẻ”. Tính P(A). b) Gọi B là biến cố: “thẻ được lấy ghi số chẵn”. Tính P(B). c) Gọi C là biến cố: “thẻ được lấy ghi số chia hết cho 3”. Tính P(C). d) Gọi D là biến cố: “thẻ được lấy ghi số không chia hết cho 6”. Tính P(D). + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Trên đoạn AC ta lấy điểm P sao cho AP/AC = 2/3. a) Xác định giao điểm I của đường thẳng MP và mp(BCD). b) Xác định giao tuyến (d) của hai mặt phẳng (MNP) và (ABD). c) Chứng minh ba đường thẳng (d), AD và NP đồng quy. d) Gọi E là trung điểm BN, K là giao điểm của AE và MN. Chứng minh: EC song song với mp(MNP). + Trong khai triển (1 + mx)^n, biết hệ số của x là 24, hệ số của x3 là 1512. Hãy tìm m, n.
Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường THPT chuyên ĐHSP Hà Nội
Thứ Tư ngày 11 tháng 12 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội tổ chức kì thi kiểm tra chất lượng cuối học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội gồm có 04 mã đề: 132, 209, 357, 485; đề được biên soạn theo dạng kết hợp giữa trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm có 20 câu, chiếm 5,0 điểm, phần tự luận gồm có 04 câu, chiếm 5,0 điểm, học sinh có 90 phút để hoàn thành bài thi HK1 Toán 11, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường THPT chuyên ĐHSP Hà Nội : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Hai mặt bên SAB, SCD là các tam giác đều. Gọi G là trọng tâm tam giác SAB, E là điểm di động trên đoạn thẳng BG (E khác B). Cho mp(α) qua E, song song với SA và BC. a) Chứng minh rằng đường thẳng AD song song với mp(α). Tìm giao điểm M, N, P, Q của mp(α) với các cạnh SB, SC, DC, BA. b) Gọi I là giao điểm của QM và PN. Chứng minh I nằm trên một đường thẳng cố định khi điểm E di động trên đoạn BG. c) Chứng minh tam giác IPQ là tam giác đều. Tính diện tích tam giác IPQ theo a. [ads] + Trong các khẳng định sau, khẳng định nào đúng? A. Qua ba điểm phân biệt bất kì có duy nhất một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. C. Qua hai điểm phân biệt có duy nhất một mặt phẳng. D. Qua bốn điểm phân biệt bất kì có duy nhất một mặt phẳng. + Cho hình chóp S.ABCD, gọi M, N, P theo thứ tự là trung điểm các cạnh BC, CD và SA. Mặt phẳng (MNP) cắt hình chóp S.ABCD theo thiết diện là hình gì? A. Ngũ giác. B. Tứ giác. C. Lục giác. D. Tam giác.
Đề thi HKI Toán 11 năm 2019 - 2020 trường Nguyễn Bỉnh Khiêm - TP HCM
Đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM gồm 30 câu trắc nghiệm và 07 câu tự luận, phần trắc nghiệm chiếm 06 điểm, phần tự luận chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 11 năm 2019 – 2020 trường Nguyễn Bỉnh Khiêm – TP HCM : + Cho hình chóp S.ABCD có ABCD là hình thang đáy lớn là AB. Gọi M, N lần lượt là trung điểm của SA, SB, điểm P thuộc SC sao cho SP = 2PC. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Tìm giao điểm Q của SD và mặt phẳng (MNP). c) Tìm thiết diện của mặt phẳng (MNP) và hình chóp S.ABCD. d) Gọi I, J, K lần lượt là giao điểm của AD và MQ, MP và AC, NQ và BD. Chứng minh I, J, K thẳng hàng. + Có hai hộp chứa 8 bút xanh và 10 bút đỏ. Chọn ra hai bút. Tính xác suất để: a) Hai bút khác màu. b) Hai bút cùng màu. + Từ tập A = {0, 1, 2, 3, 4, 5} lập được bao nhiêu số tự nhiên thỏa mãn: a) Số gồm 4 chữ số phân biệt. b) Số chẵn gồm 4 chữ số phân biệt.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6