Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học hàm số lượng giác và phương trình lượng giác - Diệp Tuân

Tài liệu gồm 216 trang, được biên soạn bởi thầy giáo Diệp Tuân, hướng dẫn tự học chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình Đại số và Giải tích 11 chương 1. Khái quát nội dung tài liệu tự học hàm số lượng giác và phương trình lượng giác – Diệp Tuân: BÀI 1 . HÀM SỐ LƯỢNG GIÁC CƠ BẢN. + Dạng 1. Tập xác định và tập giá trị của hàm số lượng giác. + Dạng 2. Tính chất của hàm số lượng giác và đồ thị của hàm số lượng giác. + Dạng 3. Tính chẵn, lẻ của hàm số lượng giác. + Dạng 4. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 5. Khảo sát sự biến thiên và vẽ đồ thị của hàm số lượng giác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. + Dạng 1. Phương trình sin x = m. + Dạng 2. Phương trình cos x = m. + Dạng 3. Phương trình tan x = m. + Dạng 4. Phương trình cot x = m. + Dạng 5. Mối quan hệ giữa sin x và cos x; tan x và cot x. + Dạng 6. Phương trình lượng giác bậc chẵn. + Dạng 7. Tìm tham số m để phương trình lượng giác có nghiệm. + Dạng 8. Tìm nghiệm của phương trình lượng giác nằm trong đoạn [a;b], khoảng (a;b). + Dạng 9. Phương pháp loại nghiệm khi giải phương trình lượng giác có điều kiện. [ads] BÀI 3 . MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. + Dạng 1. Phương trình thuần nhất bậc hai đối với sin x, cos x, tan x, cot x. + Dạng 2. Phương trình bậc nhất đối với sin x, cos x. + Dạng 3. Phương trình đẳng cấp bậc hai đối với sin x, cos x. + Dạng 4. Phương trình đối xứng (phản đối xứng) đối với sin x, cos x. + Dạng 5. Phương trình biến đổi tổng thành tích, tích thành tổng, hạ bậc (bậc chẵn). + Dạng 6. Phương trình lượng giác dạng tích. BÀI 4 . LƯỢNG GIÁC TRONG CÁC ĐỀ THI TUYỂN SINH ĐẠI HỌC.

Nguồn: toanmath.com

Đăng nhập để đọc

Phương trình lượng giác thường gặp - Lê Văn Đoàn
Tài liệu gồm 44 trang được biên soạn bởi thầy Lê Văn Đoàn hướng dẫn phương pháp giải một số dạng phương trình lượng giác thường gặp và một số bài tập nhằm giúp học sinh tự rèn luyện. Dạng toán 1 . Phương trình bậc hai và bậc cao theo một hàm lượng giác. Quan sát và dùng các công thức biến đổi để đưa phương trình về cùng một hàm lượng giác (cùng sin hoặc cùng cos hoặc cùng tan hoặc cùng cot) với cung góc giống nhau. + Nhóm 1. Phương trình bậc hai cơ bản. + Nhóm 2. Sử dụng công thức (sinx)^2 + (cosx)^2 = 1. + Nhóm 3. Sử dụng công thức nhân đôi khi cung góc gấp đôi nhau. + Nhóm 4. Vừa hạ bậc vừa nhân đôi khi tồn tại cung góc gấp 4 lần nhau. + Nhóm 5. Sử dụng công thức liên quan đến tan, cot đưa về phương trình bậc hai. + Nhóm 6. Phương trình quy về phương trình bậc hai (dạng nâng cao). Dạng toán 2 . Phương trình lượng giác bậc nhất đối với sin và cos (phương trình cổ điển). + Nhóm 1. Dạng cơ bản asinx + bcosx = c. + Nhóm 2. Dạng asinx + bcosx = √(a^2 + b^2)sin(βx + γ) và asinx + bcosx = √(a^2 + b^2)cos(βx + γ) (với a^2 + b^2 khác 0). + Nhóm 3. Dạng asin(mx) + bcos(mx) + csin(nx) + dcos(nx) (với a^2 + b^2 = c^2 + d^2 ≠ 0). Dạng toán 3 . Phương trình lượng giác đẳng cấp. + Nhóm 1. Đẳng cấp bậc hai. + Nhóm 2. Đẳng cấp bậc ba, bậc bốn. Dạng toán 4 . Phương trình lượng giác đối xứng. Dạng toán 5 . Một số dạng khác. + Nhóm 1. Phương trình dạng msin2x + ncos2x + psinx + qcosx + r = 0. + Nhóm 2. Phương trình có chứa R(… tanX, cotX, sin2X, cos2X, tan2X …) sao cho cung của sin, cos gấp đôi cung của tan hoặc cotan. + Nhóm 3. Áp dụng công thức lượng giác tan(x + a)tan(b – x) = 1 khi a + b = pi/2 + kpi, cot(x + a)cot(b – x) = 1 khi a + b = pi/2 + kpi hay tan(a ± b) = (tana ± tanb)/(1 ± tanatanb). + Nhóm 4. Đặt số đo cung phức tạp để đưa về phương trình quen thuộc.
Chuyên đề hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 52 trang phân dạng và tuyển chọn các bài tập chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1. 1. HÀM SỐ LƯỢNG GIÁC Dạng 1. Tìm tập xác định của hàm số lượng giác. Dạng 2. Tính chẵn lẻ của hàm số. Dạng 3. Chu kỳ của hàm số lượng giác. Dạng 4. Chứng minh T0 là chu kì của một hàm số lượng giác. Dạng 5. Bảng biến thiên và đồ thị của hàm số lượng giác. Dạng 6. Sử dụng phép biến đổi đồng nhất và tính chất của hàm số lượng giác. Dạng 7. Các bài toán sử dụng bất đẳng thức đã biết để tìm giá trị lớn nhất và giá trị nhỏ nhất. Dạng 8. Các bài toán sử dụng tính đồng biến nghịch biến. Dạng 9. Các bài toán liên quan đến asin x + bcos x = c. 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN CÓ ĐIỀU KIỆN [ads] 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 3.1. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 1. Một số dạng cơ bản phương trình bậc hai đối với một hàm số lượng giác. 3.2 Phương trình bậc nhất đối với sin và cos. Dạng 2. Phương trình bậc nhất đối với sin và cos. 3.3 Phương trình thuần nhất đối với sin và cos. Dạng 3. Phương trình thuần nhất đối với sin và cos. 4. PHƯƠNG TRÌNH LƯỢNG GIÁC KHÔNG MẪU MỰC Dạng 1. Phương pháp đưa về tổng bình phương. Dạng 2. Phương pháp đối lập. Dạng 3. Phương pháp chứng minh nghiệm duy nhất. Dạng 4. Phương pháp đặt ẩn phụ. Dạng 5. Phương pháp đưa về hệ phương trình. Dạng 6. Một số phương trình lượng giác có cách giải đặc biệt. 4.1 Phương trình lượng giác có nghiệm trên khoảng, đoạn. 4.2 Dạng toán khác về phương trình lượng giác thường gặp.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Đặng Thị Oanh
Tài liệu gồm 47 trang tóm gọn lý thuyết và bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác thuộc chương trình Đại số và Giải tích 11 chương 1, tài liệu được biên soạn bởi cô giáo Đặng Thị Oanh. §1. HÀM SỐ LƯỢNG GIÁC 1. Tập xác định của hàm số lượng giác. 2. Chu kỳ của hàm số lượng giác. 3. Tập giá trị của hàm số lượng giác. 4. Tính chẵn, lẻ của hàm số lượng giác. 5. Tập đơn điệu của hàm số lượng giác. 6. Đồ thị của hàm số lượng giác. 7. Bài tập trắc nghiệm hàm số lượng giác. §2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] §3. MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 1. Phương trình bậc hai đối với một hàm số lượng giác. 2. Phương trình bậc nhất đối với sin x và cos x. 3. Phương trình đẳng cấp bậc hai. 4. Phương trình đối xứng. 5. Phương trình dạng khác. 6. Bài tập trắc nghiệm. ĐỀ THI ĐẠI HỌC, CAO ĐẴNG VÀ TNPT CÁC NĂM ÔN TẬP CHƯƠNG I
321 bài toán trắc nghiệm phương trình lượng giác thường gặp - Trần Tuấn Huy
Tài liệu gồm 36 trang được biên soạn bởi thầy Trần Tuấn Huy tuyển chọn 321 bài toán trắc nghiệm phương trình lượng giác thường gặp có đáp án. Các dạng toán được đề cập trong tài liệu : + Loại 1. Phương trình bậc nhất đối với một hàm số lượng giác. + Loại 2. Phương trình bậc cao đối với sinx. + Loại 3. Phương trình bậc cao đối với cosx. + Loại 4. Phương trình bậc cao đối với sinx và cosx. + Loại 5. Phương trình bậc cao đối với tanx và cotx. + Loại 6. Phương trình đẳng cấp. + Loại 7. Phương trình dạng asinx + bcosx = c. + Loại 8. Phương trình đối xứng và phản đối xứng. + Loại 9. Phương trình lượng giác chứa ẩn ở mẫu. + Loại 10. Phương trình lượng giác có chứa tham số. + Loại 11. Một số dạng toán khác.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6