Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng bài tập ứng dụng hình học của tích phân Toán 12 KNTTVCS

Nguồn: toanmath.com

Đăng nhập để đọc

Tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước
Tài liệu gồm 20 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Định nghĩa Cho f là hàm số liên tục trên đoạn a b Giả sử F là một nguyên hàm của f trên. a b Hiệu số F b F a được gọi là tích phân từ a đến b hay tích phân xác định trên đoạn a b của hàm số f x kí hiệu là d. b a f x x Ta dùng kí hiệu b a F x F b F a để chỉ hiệu số F b F a. Vậy d b b a a f x x F x F b F a. Nhận xét: Tích phân của hàm số f từ a đến b có thể kí hiệu bởi d b a f x x hay d. b a f t t Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào cách ghi biến số. Ý nghĩa hình học của tích phân: Nếu hàm số f liên tục và không âm trên đoạn a b thì tích phân d b a f x x là diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y f x trục Ox và hai đường thẳng x a x b. Vậy d. b a S f x x. 2. Tính chất của tích phân 1. d 0 a a f x x 2. d d b a a b f x x f x x 3. d d d b c c a b a f x x f x x f x x a b c 4. d. d b b a a k f x x k f x x k 5. d d d b b b a a a f x g x x f x x g x x. Lưu ý: 1 f x là hàm số chẵn và liên tục trên đoạn a a;, a 0 thì 0 d 2 d a a a f x x f x x 2 f x là hàm số lẻ và liên tục trên đoạn a a a 0 thì d 0 a a f x x. Chuyên đề bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước 3 f x là hàm số liên tục, tuần hoàn với chu kì T thì d a T a f x x 0 d T f x x 2 2 d T T f x x a R. B. BÀI TẬP
Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt
Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.
Phương pháp tích phân từng phần tạo các lượng triệt tiêu
Trong quá trình dạy và học về bài toán tích phân, chúng ta có rất nhiều cách tính tích phân như đổi biến, từng phần … Tuy nhiên khi đứng trước một bài toán không phải lúc nào chúng ta cũng thấy luôn điều đó, đặc biệt những bài toán cồng kềnh và hình thức phức tạp. Mặc dù cách xử lý lại hết sức đơn giản, xuất phát từ những thứ rất gần gũi và thân quen mà bản thân chúng ta lại không ngờ đến. Từ thực tế kinh nghiệm giảng dạy cũng như như cầu học tập của các em học sinh, BQT xin đưa ra một hướng làm nhỏ về bài toán tích phân: Phương pháp tích phân từng phần tạo lượng triệt tiêu. Cở sở của phương pháp chính là sử dụng tích phân đã được học trong chương trình sách giáo khoa và định nghĩa của tích phân. Bài viết là một kinh nghiệm nho nhỏ trong quá trình dạy học, hy vọng sẽ giúp ích được phần nào cho các thầy cô trong quá trình dạy học cũng như các em học sinh hiểu rõ vấn đề hơn trong quá trình học tập về bài toán tích phân.
Một số bài toán trong tích phân có vận dụng phương trình hàm
Tài liệu gồm 24 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Chi (trường THPT Kinh Môn, tỉnh Hải Dương), hướng dẫn giải một số bài toán trong tích phân có vận dụng phương trình hàm. Trong chương trình SGK Giải tích 12, các dạng tích phân được tính bằng các tính chất của tích phân và tính chất của hàm số hay tích phân thông qua giả thiết là các dạng phương trình hàm xuất hiện rất ít, chính vì vậy khả năng thực hành tính toán của học sinh còn nhiều hạn chế hay chưa nói đến là gặp rất nhiều khó khăn. Trước đây, trong các kì thi từ thi tốt nghiệp THPT đến các kỳ thi Đại học, Cao đẳng hay ngay trong quá trình dạy hầu như không xuất hiện các dạng tích phân cho dưới dạng phương trình hàm, vì vậy sự quan tâm của giáo viên và học sinh về vấn đề này là không có. Từ khi Bộ GD&ĐT chuyển hình thức thi môn Toán từ thi tự luận sang thi trắc nghiệm thì dạng tích phân này đã có trong đề thi đã xuất hiện và khi dạy học vấn đề này cũng được các thầy cô và các em học sinh quan tâm hơn. Từ những lý do trên tôi đã mạnh dạn viết bài nhỏ này để nói về một số bài toán tích phân có sử dụng phương trình hàm và cách giải của chúng với mục tiêu dẫn dắt học sinh biết vận dụng những kiến thức cơ bản, kết hợp các phương pháp được tiếp cận từ sách giáo khoa để tạo được một thói quen mới, một phương pháp mới cho dạng toán Tích phân.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6