Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và giải chi tiết 99 câu trắc nghiệm chuyên đề lượng giác - Nguyễn Nhanh Tiến

Tài liêu gồm 24 trang phân dạng và giải chi tiết 99 bài toán trắc nghiệm chọn lọc chủ đề hàm số lượng giác và phương trình lượng giác chương trình Đại số và Giải tích 11. Các dạng toán trong tài liệu gồm có: 1. Tập xác định của hàm số lượng giác • y = f(x)/g(x) có nghĩa khi và chỉ khi g(x) ≠ 0 • y = √f(x) có nghĩa khi và chỉ khi f(x) ≥ 0 • y = f(x)/√g(x) có nghĩa khi và chỉ khi g(x) > 0 2. GTLN và GTNN Của Hàm Số Lượng Giác • −1 ≤ sinx ≤ 1; 0 ≤ (sinx)^2 ≤ 1 • −1 ≤ cos x ≤ 1; 0 ≤ (cosx)^2 ≤ 1 • |tanx+cot x| ≥ 2 • Hàm số dạng y = a(sinx)^2 + bsinx + c (tương tự cosx, tanx …) tìm max min theo hàm bậc 2 (lập bảng biến thiên) • Dùng phương trình asinx + bcosx = c có nghiệm x ∈ R khi và chỉ khi a^2 + b^2 ≥ c^2 • Với hàm số y = asinx + bcosx ta có kết quả: ymax = √(a^2 + b^2), ymin = −√(a^2 + b^2) • Hàm số có dạng: y = (a1.sinx + b1.cosx + c1)/(a2.sinx + b2.cos x + c2) ta tìm tập xác định. Đưa về phương trình dạng: asinx + bcosx = c [ads] 3. Tính chẵn lẻ Của Hàm Số Lượng Giác Để xác định tính chẵn lẻ của hàm số lượng giác ta thực hiện theo sau: + Bước 1: Tìm tập xác định D của hàm số, khi đó: • Nếu D là tập đối xứng (Tức ∀x ∈ D ⇒ −x ∈ D), ta thực hiện tiếp bước 2 • Nếu D không là tập đối xứng (Tức ∃x ∈ D mà −x ∈/ D), ta kết luận hàm số không chẵn không lẻ + Bước 2: Xác định f(−x) khi đó: • Nếu f(−x) = f(x) kết luận là hàm số chẵn • Nếu f(−x) = −f(x) kết luận là hàm số lẻ • Ngoài ra kết luận là hàm số không chẵn cũng không lẻ 4. Tính Tuần Hoàn Của Hàm Số Lượng Giác • Hàm số y = sin(ax + b) và y = cos(ax + b) với a ≠ 0 tuần hoàn với chu kì: 2π/|a| • Hàm số y = tan(ax + b) và y = cot(ax + b) với a 6= 0 tuần hoàn với chu kì: π/|a| • Hàm số f(x), g(x) tuần hoàn trên tập D có các chu kì lần lượt a và b với a, b ∈ Q. Khi đó F(x) = f(x) + g(x), G(x) = f(x)g(x) cũng tuần hoàn trên D • Hàm số F(x) = m. f(x) + n.g(x) tuần hoàn với chu kì T là BCNN của a,b 5. Phương Trình Lượng Giác Cơ Bản u, v là các biểu thức của x, x là số đo của góc lượng giác: • sinu = sinv ⇔ u = v + 2kπ hoặc x = π − v + k2π • cosu = cos v ⇔ u = ±v + k2π • tanu = tanv ⇔ u = v + kπ • cotu = cot v ⇔ u = v + kπ• Muốn tìm số điểm (vị trí) biểu diễn của x lên đường tròn lượng giác thì ta đưa về dạng x = α +k2π/n. Kết luận số điểm là n, với k, l ∈ Z

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu chủ đề phương trình lượng giác sơ cấp
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề phương trình lượng giác sơ cấp, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM + Loại 1: Phương trình sin x = m. + Loại 2: Phương trình cos x = m. + Loại 3: Phương trình tan x = m. + Loại 4: Phương trình cot x = m. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Tài liệu chủ đề hàm số lượng giác
Tài liệu gồm 40 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hàm số lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Tính tuần hoàn của hàm số lượng giác. 3) Tính chẵn lẻ của hàm số lượng giác. 4) Sự biến thiên và đồ thị các hàm số lượng giác. II. HỆ THỐNG VÍ DỤ MINH HỌA Dạng 1: Tập xác định và tập giá trị của hàm số lượng giác. Dạng 2: Tính chẵn lẻ của hàm số lượng giác. Dạng 3: Chu kì của hàm số lượng giác. Dạng 4: Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Tổng ôn chuyên đề cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 42 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chuyên đề cung và góc lượng giác, công thức lượng giác, có đáp án và lời giải chi tiết; giúp học sinh lớp 10 tổng ôn chương trình Đại số 10 chương 6. I. KIẾN THỨC TRỌNG TÂM 1) Các hệ thức lượng giác cơ bản. 2) Dấu của hàm số lượng giác. 3) Mối quan hệ giữa các cung lượng giác đặc biệt. 5) Công thức góc nhân đôi, nhân ba. 6) Công thức hạ bậc hai, bậc ba. 7) Công thức biến đổi tích sang tổng và ngược lại. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Hoàng Việt
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm (có đáp án) chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §1 – HÀM SỐ LƯỢNG GIÁC 1. A KIẾN THỨC CẦN NHỚ 1. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 2. + Dạng 1. Tìm tập xác định của hàm số lượng giác 2. + Dạng 2. Tính chẵn lẻ của hàm số 6. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 7. C BÀI TẬP TRẮC NGHIỆM 12. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 19. A KIẾN THỨC CẦN NHỚ 19. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 21. + Dạng 1. Giải các phương trình lượng giác cơ bản 21. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 23. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 25. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước 27. C BÀI TẬP TRẮC NGHIỆM 29. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 37. A KIẾN THỨC CẦN NHỚ 37. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 38. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 38. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 41. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 45. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 48. + Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x 50. C BÀI TẬP TRẮC NGHIỆM 51. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 59. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 59. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 59. + Dạng 2. Biến đổi asinx + bcosx 62. + Dạng 3. Biến đổi đưa về phương trình tích 64. + Dạng 4. Một số bài toán biện luận theo tham số 67. B BÀI TẬP TỰ LUYỆN 70. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 73. A Đề số 1 73. B Đề số 2 79. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 83.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6