Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 21 tháng 09 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi D là hình chiếu của I trên BC, AD cắt lại (O) tại G. Lấy E và F lần lượt là điểm chính giữa của cung nhỏ BC và cung lớn BC. Hai đường thẳng ID và FG cắt nhau tại điểm H. Gọi M là trung điểm cạnh BC. a) Chứng minh rằng điểm H nằm trên đường tròn ngoại tiếp tam giác IBC. b) Gọi P là điểm trên đường thẳng ID sao cho MP = MB và K trên đường thẳng BC sao cho KP vuông góc PM, KI cắt FG tại N và MN cắt AI tại J. Chứng minh E là trung điểm của IJ. + Tìm tất cả các bộ số nguyên dương (a; b; c) thỏa mãn: a^b + 1 | (a + 1)^c. + Bạn A có một số chiếc thẻ thuộc ba loại thẻ: thẻ hai mặt đỏ; thẻ một mặt vàng, một mặt đỏ; thẻ hai mặt vàng. Bạn ấy không phân biệt được màu sắc nên cần một máy scan để quét. Tuy nhiên máy này cũng chỉ có thể phân biệt được tất cả các mặt thẻ úp xuống đưa vào trong máy có đều là màu vàng hay không. Nghĩa là nếu tất cả các mặt úp đều vàng nó sẽ báo vàng, còn chỉ cần có một mặt đỏ trong số đó thì nó báo không vàng. Mỗi lần bạn ấy có thể chọn bao nhiêu thẻ để đưa vào cũng được. a) Chứng minh rằng nếu A có n thẻ gồm một thẻ hai mặt đỏ và n – 1 thẻ hai mặt vàng thì A có thể sử dụng máy để tìm ra thẻ hai mặt đỏ sau nhiều nhất là [log2n] bước. b) Xét dãy số Fibonacci (F) với F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn với n >= 1. Với n >= 4, giả sử bạn A có Fn thẻ gồm một thẻ hai mặt đỏ và một thẻ một mặt vàng, một mặt đỏ, còn lại là các thẻ hai mặt vàng. Hỏi bạn ấy có thuật toán nào để có thể tìm ra thẻ hai mặt đỏ bằng cách sử dụng máy nhiều nhất n lần hay không?

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn HSG cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Quảng Ngãi
Nội dung Đề thi chọn HSG cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Quảng Ngãi Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 09 tháng 02 năm 2023. Trích dẫn Đề thi chọn HSG cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Quảng Ngãi : + Cho hình hộp đứng ABCD A B C D có đáy ABCD là hình thoi cạnh 2a, góc BAD 120 và khoảng cách từ B đến đường thẳng B D bằng a 3. Tính thể tích khối hộp đã cho. + Cho tứ diện ABCD. Hai điểm E, F lần lượt di động trên hai đoạn thẳng BC, BD sao cho E không trùng với B, C; F không trùng với B, D và 2 3 10 BC BF BD BE BE BF. Gọi V, V’ lần lượt là thể tích của các khối tứ diện ABCD, ABEF. Tìm giá trị nhỏ nhất của tỉ số V V. + Cho tập hợp X = {0;1;2;3;4;5;6;7}. Gọi S là tập hợp các số tự nhiên lẻ có bốn chữ số đôi một khác nhau được lập từ các chữ số thuộc tập X. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn nhỏ hơn 2023.
Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi được biên soạn theo hình thức 40% tự luận kết hợp 60% trắc nghiệm, phần tự luận gồm 04 câu (08 điểm), phần trắc nghiệm gồm 40 câu (12 điểm), thời gian làm bài 180 phút. Trích dẫn Đề thi học sinh giỏi cấp tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 – (m + 1)x + 4 − m cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn -3. Cho x, y là hai số thực dương, tìm giá trị lớn nhất của biểu thức P. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm cạnh AD. Tính khoảng cách từ điểm B đến mặt phẳng (SCM). Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật, AB = 6, AD = 3, A’C = 3 và mặt phẳng (ACC’A’) vuông góc với mặt phẳng đáy. Biết góc giữa hai mặt phẳng (ACC’A’) và (ADD’A’) là a thỏa mãn tana = 3/2. Tính thể tích của khối lăng trụ ABCD.A’B’C’D’. + Hai bạn Quý và Mão mỗi bạn chọn ngẫu nhiên một tập con khác rỗng từ tập E = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Tính xác suất để mỗi bạn chọn được một tập con có 3 phần tử và trong hai tập con đó có ít nhất hai phần tử giống nhau.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022. Trích dẫn Đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho hàm số f(x) = x3 − 3(m + 1)x2 + 3m(m + 2)x − 2 + m (1) (m là tham số). Tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) có các điểm cực trị đồng thời khoảng cách từ điểm cực đại đến trục hoành bằng khoảng cách từ điểm cực tiểu đến trục tung. + Cho đa giác đều (H) có 23 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác lập được thỏa mãn không có cạnh nào là cạnh của đa giác đều (H). + Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng a 2 và O là tâm của đáy. Gọi M, N, P và Q lần lượt là các điểm đối xứng của O qua các mặt phẳng (SAB), (SBC), (SCD) và (SDA). Tính thể tích của khối chóp S.MNPQ.
Đề thi học sinh giỏi tỉnh lớp 12 môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thừa Thiên Huế
Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Trích dẫn Đề thi học sinh giỏi tỉnh Toán lớp 12 (chuyên) năm 2022 – 2023 sở GD&ĐT Thừa Thiên Huế : + Tìm tất cả các cặp số nguyên dương (x;y) sao cho x4 + 10×2 + 2y là một số chính phương. + Trên đường tròn (O) cho dây cung BC cố định không đi qua O và điểm A thay đổi sao cho A khác B, A khác C. Gọi D, E, F lần lượt là trung điểm của các đoạn thẳng BC, CA, AB. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi (Q) là đường tròn đi qua hai điểm D, M và tiếp xúc với đường tròn (O); d là tiếp tuyến của (Q) tại D. Gọi N, P lần lượt là giao điểm của d với các đường trung trực của DE và DF. Gọi H là giao điểm của NE và PF, G là trọng tâm của tam giác ABC. a) Chứng minh đường tròn (Q) tiếp xúc với đường tròn ngoại tiếp của tam giác DEF. b) Chứng minh khi A thay đổi trên (O) thì đường thẳng GH luôn đi qua một điểm cố định. + Cho n là một số nguyên dương. Một bảng n x n gồm n2 ô vuông đơn vị, mỗi ô được tô bởi một trong hai màu trắng hoặc đen, được gọi là bảng lồi nếu với mỗi ô được tô màu đen thì ô liền kề nằm bên trái nó hoặc bên trên nó (nếu có) đều được tô màu đen. Với a, b là hai ô vuông đơn vị bất kì của bảng, cặp gồm hai ô vuông (a;b) gọi là cặp đẹp nếu a được tô màu đen, b được tô màu trắng và cả hai đều nằm trên cùng một hàng hoặc cùng một cột của bảng. a) Với n = 3, hãy chỉ ra bảng lồi 3 × 3 gồm 6 ô đen và có số cặp đẹp lớn nhất. b) Tìm số cặp đẹp lớn nhất có thể của một bảng lồi n x n.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6