Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

700 câu vận dụng cao nguyên hàm - tích phân và ứng dụng ôn thi THPT môn Toán

Tài liệu gồm 90 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 700 câu vận dụng cao (VDC) nguyên hàm – tích phân và ứng dụng có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 700 câu vận dụng cao nguyên hàm – tích phân và ứng dụng ôn thi THPT môn Toán: + Một ô-tô bắt đầu chuyển động nhanh dần đều với vận tốc v1(t) = 7t (m/s). Đi được 5 (s), người lái xe phát hiện chướng ngại vật và phanh gấp, ô-tô tiếp tục chuyển động chậm dần đều với gia tốc a = −70 (m/s2). Tính quãng đường S (m) đi được của ô-tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn? + Cho hình (H) là hình phẳng giới hạn bởi đường cong x = y2 và đường thẳng x = a với a > 0. Gọi V1 và V2 lần lượt là thể tích của vật thể trong xoay được sinh ra khi quay hình (H) quanh trục hoành và trục tung. Kí hiệu ∆V là giá trị lớn nhất của V1 − V2/8 đạt được khi a = a0 > 0. Hệ thức nào sau đây đúng? [ads] + Cho hàm số f(x) = ax3 + bx2 + cx + d (a khác 0) thỏa mãn (f(0) − f(2)) (f(3) − f(2)) > 0. Mệnh đề nào dưới đây đúng? A Phương trình f(x) = 0 luôn có nghiệm duy nhất. B Hàm số f(x) có hai cực trị. C Hàm số f(x) không có cực trị. D Phương trình f(x) = 0 luôn có 3 nghiệm phân biệt.

Nguồn: toanmath.com

Đăng nhập để đọc

Ứng dụng tích phân giải bài toán liên quan đến so sánh giá trị hàm số
Tài liệu gồm 16 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn phương pháp ứng dụng tích phân giải bài toán liên quan đến so sánh giá trị hàm số, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. Trích dẫn tài liệu ứng dụng tích phân giải bài toán liên quan đến so sánh giá trị hàm số : + Cho hàm số f x liên tục trên. Đồ thị của hàm số y f x được cho như hình vẽ bên. Diện tích các hình phẳng K H lần lượt là 5 8 12 3. Biết 19 1 12 f tính f 2. + Cho các số thực a, b, c, d thỏa mãn 0 a b c d và hàm số y f x. Biết hàm số y f x có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y f x trên 0 d. Khẳng định nào sau đây là khẳng định đúng? + Cho hàm số f x có đạo hàm là f x. Đồ thị của hàm số y f x được cho như hình bên. Biết rằng f f f f 0 3 2 5. Giá trị nhỏ nhất, giá trị lớn nhất của f x trên đoạn 0 5 lần lượt là? + Cho hàm số y f x xác định và có đạo hàm trên. Biết đồ thị hàm số y f x như hình vẽ bên. Xét hàm số 2 2 2 x g x f x x. Tìm số lớn nhất trong ba số g g g? + Cho hàm số y f x liên tục trên đồ thị của hàm số y f x có dạng như hình vẽ bên. Số nào lớn nhất trong các số sau f 0 f 1 f 2 f 3?
Tính giá trị của hàm số khi cho trước các tích phân liên quan
Tài liệu gồm 17 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán tính giá trị của hàm số khi cho trước các tích phân liên quan, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Tính chất nguyên hàm, tích phân thường sử dụng. 2. Nhị thức Niu-tơn. B. BÀI TẬP Cho hàm số f x xác định trên 1 2 thỏa mãn 2 2 1 f x x f 0 1 và f 1 2. Giá trị của biểu thức f f 1 3. Cho hàm số f x có đạo hàm trên thỏa mãn 2017 2018 2018 2018 x f x f x x e với mọi x và f 0 2018. Tính giá trị f 1. Cho f x với x và thỏa mãn điều kiện 2 f x f x x f x 2 1 f 0 0. Tính giá trị lớn nhất M giá trị nhỏ nhất m của hàm số y f x trên [1 3]. Cho hàm số 3 1 4 8 d x f x t t t. Gọi m M lần lượt là giá trị nhỏ nhất giá trị lớn nhất của hàm số f x trên đoạn 0 6. Tính M m. Lấy tích phân hai vế ta được Cho hàm số 3 1 ln 3 f x x. Giải bất phương trình sau: 2 0 6 sin 2.
Tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước
Tài liệu gồm 20 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Định nghĩa Cho f là hàm số liên tục trên đoạn a b Giả sử F là một nguyên hàm của f trên. a b Hiệu số F b F a được gọi là tích phân từ a đến b hay tích phân xác định trên đoạn a b của hàm số f x kí hiệu là d. b a f x x Ta dùng kí hiệu b a F x F b F a để chỉ hiệu số F b F a. Vậy d b b a a f x x F x F b F a. Nhận xét: Tích phân của hàm số f từ a đến b có thể kí hiệu bởi d b a f x x hay d. b a f t t Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào cách ghi biến số. Ý nghĩa hình học của tích phân: Nếu hàm số f liên tục và không âm trên đoạn a b thì tích phân d b a f x x là diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y f x trục Ox và hai đường thẳng x a x b. Vậy d. b a S f x x. 2. Tính chất của tích phân 1. d 0 a a f x x 2. d d b a a b f x x f x x 3. d d d b c c a b a f x x f x x f x x a b c 4. d. d b b a a k f x x k f x x k 5. d d d b b b a a a f x g x x f x x g x x. Lưu ý: 1 f x là hàm số chẵn và liên tục trên đoạn a a;, a 0 thì 0 d 2 d a a a f x x f x x 2 f x là hàm số lẻ và liên tục trên đoạn a a a 0 thì d 0 a a f x x. Chuyên đề bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước 3 f x là hàm số liên tục, tuần hoàn với chu kì T thì d a T a f x x 0 d T f x x 2 2 d T T f x x a R. B. BÀI TẬP
Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Hoàng Việt
Tài liệu gồm 138 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3. MỤC LỤC : Chương 3 . NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG 1. §1 – TÍNH NGUYÊN HÀM – SỬ DỤNG ĐỊNH NGHĨA, BẢNG CÔNG THỨC 1. A KIẾN THỨC CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Áp dụng bảng công thức nguyên hàm 2. + Dạng 2. Tách hàm dạng tích thành tổng 7. + Dạng 3. Tách hàm dạng phân thức thành tổng 9. C BÀI TẬP TỰ LUYỆN 14. §2 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 17. A CÁC DẠNG TOÁN THƯỜNG GẶP 17. + Dạng 1. Đổi biến dạng hàm lũy thừa 17. + Dạng 2. Đổi biến dạng hàm phân thức 19. + Dạng 3. Đổi biến dạng hàm vô tỉ 20. + Dạng 4. Đổi biến dạng hàm lượng giác 22. + Dạng 5. Đổi biến dạng hàm mũ, hàm lô-ga-rit 24. B BÀI TẬP TỰ LUYỆN 27. §3 – TÍNH NGUYÊN HÀM – SỬ DỤNG PHƯƠNG PHÁP NGUYÊN HÀM TỪNG PHẦN 30. A CÁC DẠNG TOÁN THƯỜNG GẶP 30. + Dạng 1. Nguyên hàm từng phần với “u = đa thức” 30. + Dạng 2. Nguyên hàm từng phần với “u = lôgarit” 31. + Dạng 3. Nguyên hàm kết hợp đổi biến số và từng phần 33. + Dạng 4. Nguyên hàm từng phần dạng “lặp” 35. + Dạng 5. Nguyên hàm từng phần dạng “hàm ẩn” 36. B BÀI TẬP TỰ LUYỆN 38. §4 – TÍNH TÍCH PHÂN – SỬ DỤNG ĐỊNH NGHĨA, TÍNH CHẤT 41. A CÁC DẠNG TOÁN THƯỜNG GẶP 41. + Dạng 1. Sử dụng định nghĩa, tính chất tích phân 41. + Dạng 2. Tách hàm dạng tích thành tổng các hàm cơ bản 45. + Dạng 3. Tách hàm dạng phân thức thành tổng các hàm cơ bản 47. B BÀI TẬP TỰ LUYỆN 51. §5 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ 54. A CÁC DẠNG TOÁN THƯỜNG GẶP 54. + Dạng 1. Đổi biến loại t = u(x) 54. + Dạng 2. Lượng giác hóa 59. B BÀI TẬP TỰ LUYỆN 61. §6 – TÍNH TÍCH PHÂN – SỬ DỤNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN 65. A CÁC DẠNG TOÁN THƯỜNG GẶP 65. + Dạng 1. Tích phân từng phần với “u = đa thức” 65. + Dạng 2. Tích phân từng phần với “u = logarit” 67. B BÀI TẬP TỰ LUYỆN 70. §7 – TÍCH PHÂN HÀM ẨN 74. A CÁC DẠNG TOÁN THƯỜNG GẶP 74. + Dạng 1. Sử dụng tính chất tính phân không phụ thuộc biến 74. + Dạng 2. Tìm hàm f(x) bằng phương pháp đổi biến số 76. + Dạng 3. Tìm hàm f(x) bằng phương pháp đưa về “đạo hàm đúng” 77. + Dạng 4. Phương pháp tích phân từng phần 79. + Dạng 5. Phương pháp ghép bình phương 81. B BÀI TẬP TỰ LUYỆN 84. §8 – ỨNG DỤNG TÍCH PHÂN – TÍNH DIỆN TÍCH HÌNH PHẲNG 89. A CÁC DẠNG TOÁN THƯỜNG GẶP 89. + Dạng 1. Hình phẳng giới hạn bởi hai đồ thị y = f(x) và y = g(x) 89. + Dạng 2. Hình phẳng giới hạn bởi nhiều hơn hai đồ thị hàm số 97. + Dạng 3. Toạ độ hoá một số “mô hình” hình phẳng thực tế 99. B BÀI TẬP TỰ LUYỆN 103. §9 – ỨNG DỤNG TÍCH PHÂN – TÍNH THỂ TÍCH VẬT THỂ, KHỐI TRÒN XOAY 107. A CÁC DẠNG TOÁN THƯỜNG GẶP 107. + Dạng 1. Tính thể tích vật thể khi biết diện tích mặt cắt vuông góc với Ox 107. + Dạng 2. Tính thể tích của khối tròn xoay khi cho hình phẳng quay quanh trục Ox 108. + Dạng 3. Tọa độ hóa một số bài toán thực tế 113. B BÀI TẬP TỰ LUYỆN 117. §10 – ỨNG DỤNG TÍCH PHÂN – MỘT SỐ BÀI TOÁN CHUYỂN ĐỘNG 120. A CÁC DẠNG TOÁN THƯỜNG GẶP 120. + Dạng 1. Cho hàm vận tốc, tìm quãng đường di chuyển của vật 120. + Dạng 2. Cho đồ thị hàm vận tốc, tìm quãng đường di chuyển của vật 121. + Dạng 3. Cho hàm gia tốc, tìm quãng đường di chuyển của vật 122. B BÀI TẬP TỰ LUYỆN 124. §11 – ĐỀ TỔNG ÔN 126. A ĐỀ SỐ 1 126. B ĐỀ SỐ 2 129.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6