Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng

Tài liệu gồm 48 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (Giáo viên Toán trường THPT Đặng Huy Trứ & Admin CLB Giáo Viên Trẻ TP Huế), tuyển chọn 50 bài toán trắc nghiệm liên quan đến ứng dụng tích phân để tính diện tích hình phẳng, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 và luyện thi THPT Quốc gia môn Toán. Trích dẫn Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng : + Cho đồ thị hàm số y f x và y g x như hình vẽ bên dưới: Biết đồ thị của hàm số y f x là một Parabol đỉnh I có tung độ bằng 1 2 và y g x là một hàm số bậc ba. Hoành độ giao điểm của hai đồ thị là 1 2 3 x x x thỏa mãn 1 2 3 x x x 6. Diện tích hình phẳng giới hạn bởi 2 đồ thị hàm số y f x và y g x gần nhất với giá trị nào dưới đây? + Cho hàm số 4 2 y f x ax bx c có đồ thị C và cắt trục hoành tại điểm có hoành độ bằng 1. Tiếp tuyến d tại điểm có hoành độ x 1 của C cắt C tại 2 điểm khác có hoành độ lần lượt là 0 và 2. Gọi 1 2 S S là diện tích các phần hình phẳng giới hạn bởi d và C (với 2 S là diện tích phần hình phẳng nằm bên phải trục Oy). Tỷ số 1 2 S S bằng? + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một 2 m bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)?

Nguồn: toanmath.com

Đăng nhập để đọc

Trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông
Tài liệu gồm 122 trang tuyển chọn bài tập trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng có lời giải chi tiết do thầy Đặng Việt Đông (Giáo viên trường THPT Nho Quan A – Ninh Bình) biên soạn, trong mỗi phần đều bao gồm tóm lược lý thuyết chung và bài tập trắc nghiệm đi kèm được trích từ các đề thi thử môn Toán, tài liệu thích hợp cho học sinh khá, giỏi để ôn luyện đạt điểm 8 – 9 – 10 trong kỳ thi THPT Quốc gia. Trích dẫn tài liệu trắc nghiệm nâng cao nguyên hàm, tích phân và ứng dụng – Đặng Việt Đông : + Cho a, b là hai số thực dương. Gọi (K) là hình phẳng nằm trong góc phần tư thứ hai, giới hạn bởi parabol y = ax^2 và đường thẳng y = -bx. Biết thể tích khối tròn xoay tạo được khi quay (K) xung quanh trục hoành là một số không phụ thuộc vào giá trị của a và b. Khẳng định nào sao đây là đúng? [ads] + Cho tích phân C = e^x/√(e^x + 3)dx cận từ a đến b, trong đó a là nghiệm của phương trình 2^(x^2 + 1) = 2, b là một số dương và b > a. Gọi A bằng tích phân x^2dx cận từ 1 đến 2. Tìm chữ số hàng đơn vị của b sao cho C = 3A. + Khi tính nguyên hàm 1/√(2x + 1)(x + 1)^3 dx người ta đặt t = g(x) (một hàm biểu diễn theo biến x) thì nguyên hàm trở thành 2dt. Biết g(4) = 3/√5, giá trị của g(0) + g(1) là?
Chuyên đề tích phân - Lại Văn Tôn
Tiếp nối chuyên đề nguyên hàm đã giới thiệu ở bài viết trước, thầy Lại Văn Tôn tiếp tục biên soạn và chia sẻ tài liệu hướng dẫn tự học chuyên đề tích phân. Tài liệu gồm 55 trang, trong tài liệu này, những phần chỉ đơn thuần tìm nguyên hàm và thay số tính tích phân tác giả không đề cập nhiều ví dụ, mà tập trung vào những dạng toán hướng tích phân nhiều hơn, tài liệu đi sâu giới thiệu các dạng bài tập phần trắc nghiệm tích phân. Ở cuối mỗi mục có phần bài tập tự luyện, bạn đọc tự làm để rèn luyện, áp dụng các kiến thức trong mục đó. 1. Lý thuyết tích phân 1.1. Định nghĩa tích phân 1.2. Các tính chất của tích phân 2. Tính tích phân bằng phương pháp phân tích  3. Tính tích phân bằng phương pháp đổi biến số 4. Tính tích phân bằng phương pháp tích phân từng phần [ads] 5. Ứng dụng của tích phân(trọng điểm) 5.1. Tính diện tích hình phẳng 5.1.1. Diện tích hình phẳng giới hạn bởi một đường cong 5.1.2. Diện tích hình phẳng giới hạn bởi hai đường cong 5.2. Tính thể tích vật thể 5.2.1. Tính thể tích vật thể từ công thức diện tích thiết diện 5.2.2. Tính thể tích khối tròn xoay 5.3. Một số bài toán thực tế 6. Giới thiệu một số bài tập định dạng trắc nghiệm (trọng điểm) 6.1. Trắc nghiệm lý thuyết tích phân 6.2. Trắc nghiệm liên quan tính tích phân trực tiếp 6.3. Trắc nghiệm liên quan ứng dụng tích phân Xem thêm :  Chuyên đề nguyên hàm – Lại Văn Tôn
Chuyên đề nguyên hàm, tích phân và ứng dụng - Lê Văn Đoàn
Tài liệu gồm 347 trang phân dạng và tuyển chọn các bài tập trắc nghiệm có đáp án chủ đề nguyên hàm, tích phân và ứng dụng, tài liệu được biên soạn bởi thầy Lê Văn Đoàn. §1. NGUYÊN HÀM VÀ PHƯƠNG PHÁP TÌM NGUYÊN HÀM Khái niệm nguyên hàm và tính chất Bảng nguyên hàm của một số hàm thường gặp (với C là hằng số tùy ý) Dạng toán 1. Tính nguyên hàm bằng bảng nguyên hàm Dạng toán 2. Nguyên hàm từng phần Dạng toán 3. Tìm nguyên hàm bằng phương pháp đổi biến số §2. TÍCH PHÂN Khái niệm tích phân Dạng toán 1. Tích phân cơ bản & tính chất tích phân + Nhóm 1. Tích phân cơ bản + Nhóm 2. Tích phân hàm số hữu tỷ + Nhóm 3. Tính chất tích phân + Nhóm 4. Tích phân chứa dấu trị tuyệt đối Dạng toán 2. Tích phân từng phần Dạng toán 3. Tính tích phân bằng phương pháp đổi biến số [ads] §3. ỨNG DỤNG CỦA TÍCH PHÂN Dạng toán 1. Diện tích hình phẳng và bài toán liên quan Dạng toán 2. Tìm vận tốc, gia tốc, quãng đường trong vật lí Dạng toán 3. Thể tích vật thể và thể tích vật thể tròn xoay + Nhóm 1: Tính thể tích của vật thể + Nhóm 2: Thể tích của vật thể tròn xoay
Áp dụng bất đẳng thức tích phân giải các bài toán tích phân nâng cao - Phạm Minh Tuấn
Tài liệu gồm 9 trang do tác giả Phạm Minh Tuấn biên soạn hướng dẫn áp dụng bất đẳng thức tích phân để giải một số bài toán tích phân nâng cao, đây là một dạng toán khó, được “khơi mào” bởi Bộ Giáo dục và Đào tạo kể từ lúc công bố đề tham khảo môn Toán 2018. Trích dẫn tài liệu : + Cho hai hàm số f(x) không âm và liên tục trên [0;1]. Đặt g(x) = 1 + 2∫f(t)dt và ta giả sử rằng luôn có g(x) ≥ [f(x)]^2, ∀x ∈ [0;1]. Tìm GTLN của tích phân ∫g(x)dx. [ads] + Cho hàm số f(x) liên tục trên đoạn [0;1] thỏa mãn ∫(1 – x)^2.f'(x)dx = -1/3. Giá trị nhỏ nhất của tích phân ∫f^2(x)dx là? + Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(0) = 0, max f'(x) = 6 và ∫f(x)dx = 1/3. Gọi M là giá trị lớn nhất của tích phân ∫f^3(x)dx. Khẳng định nào sau đây đúng?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6