Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Biến đổi và tính giá trị biểu thức mũ - lôgarit, biểu diễn lôgarit qua các lôgarit cơ số khác nhau

Tài liệu gồm 14 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán biến đổi và tính giá trị biểu thức mũ – lôgarit, biểu diễn lôgarit qua các lôgarit cơ số khác nhau; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. PHƯƠNG PHÁP: Muốn rút gọn các biểu thức chứa logarit ta cần sử dụng các quy tắc tính logarit và đổi cơ số của logarit. Ngoài ra, ta còn cần sử dụng các công thức lũy thừa đã học. Cho a b c là các số thực dương thỏa mãn 3 7 11 log 7 log 11 log 25 a b c 27 49 11. Giá trị của biểu thức 2 2 2 3 7 11 log 7 log 11 log 25 T a b c bằng? Cho các số thực dương x y z theo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a 1 thì 3 log log log a a a x y z theo thứ tự lập thành một cấp số cộng. Giá trị biểu thức 3 7 2020 x y z P y z x bằng? Gọi a là số thực sao cho 3 số 3 a log 2021 9 a log 2021 81 a log 2021 theo thứ tự lập thành một cấp số nhân. Tìm công bội q của cấp số nhân đó. Cho dãy số 11 11 11 2 log 2 log 3 log 1 2 n n n u với số tự nhiên n 1. Số hạng nhỏ nhất của dãy số có giá trị là m. Hỏi có bao nhiêu số hạng của dãy số cùng đạt giá trị là m.

Nguồn: toanmath.com

Đăng nhập để đọc

Phương trình logarit có chứa tham số
Tài liệu gồm 25 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán phương trình logarit có chứa tham số, được phát triển dựa trên câu 43 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu phương trình logarit có chứa tham số: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT Ta thường sử dụng các phương pháp sau: + Phương pháp 1. Phương pháp đưa về cùng cơ số. + Phương pháp 2. Phương pháp đặt ẩn phụ. + Phương pháp 3. Phương pháp hàm số. [ads] B. BÀI TẬP MẪU 1. Bài toán Cho phương trình $\log _2^2(2x) – (m + 2){\log _2}x + m – 2 = 0$ ($m$ là tham số thực). Tập hợp tất cả các giá trị của $m$ để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn $[1;2]$ là? 2. Phân tích hướng dẫn giải 1. Dạng toán: Đây là dạng toán tìm điều kiện của tham số để phương trình logarit có nghiệm thỏa mãn điều kiện cho trước. 2. Hướng giải: + Bước 1: Viết lại phương trình logarit về dạng phương trình bậc hai đối với 1 biểu thức logarit. + Bước 2: Đặt ẩn phụ là biểu thức logarit và tìm điều kiện cho ẩn phụ. + Bước 3: Tìm điều kiện cho phương trình ẩn phụ. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Ứng dụng phương pháp hàm số giải phương trình mũ và logarit
Tài liệu gồm 35 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn ứng dụng phương pháp hàm số giải phương trình mũ và logarit, được phát triển dựa trên câu 47 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu ứng dụng phương pháp hàm số giải phương trình mũ và logarit: A. KIẾN THỨC CẦN NHỚ B. BÀI TẬP MẪU 1. Đề bài : Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $0 \le x \le 2020$ và ${\log _3}(3x + 3) + x = 2y + {9^y}$? 2. Phân tích hướng dẫn giải a. Dạng toán: Ứng dụng tính đơn điệu của hàm số để giải phương trình mũ, logarit. b. Phương pháp: Tìm hàm đặc trưng của bài toán, đưa phương trình về dạng $f(u) = f(v).$ c. Hướng giải: Bước 1: Đưa phương trình đã cho về dạng $f(u) = f(v).$ Bước 2: + Xét hàm số $y = f(t)$ trên miền $D.$ + Tính $y’$ và xét dấu $y’.$ + Kết luận tính đơn điệu của hàm số $y = f(t)$ trên $D.$ Bước 3: Tìm mối liên hệ giữa $x$ và $y$ rồi tìm các cặp số $(x;y)$ rồi kết luận. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình mũ dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình mũ: A. KIẾN THỨC CƠ BẢN 1. Phương trình mũ cơ bản ${a^x} = b$ ($a > 0$, $a \ne 1$). + Phương trình có một nghiệm duy nhất khi $b > 0.$ + Phương trình vô nghiệm khi $b \le 0.$ 2. Giải phương trình mũ bằng phương pháp biến đổi, quy về cùng cơ số. 3. Giải phương trình mũ bằng phương pháp đặt ẩn phụ. 4. Giải phương trình mũ bằng phương pháp logarit hóa. 5. Giải phương trình mũ bằng phương pháp đồ thị. 6. Giải phương trình mũ bằng phương pháp sử dụng tính đơn điệu của hàm số. 7. Giải phương trình mũ bằng phương pháp đánh giá. 8. Giải bất phương trình mũ: Ta cũng thường sử dụng các phương pháp giải tương tự như đối với phương trình mũ. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu phương trình và bất phương trình logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình và bất phương trình logarit: A. KIẾN THỨC CƠ BẢN 1. Định nghĩa. + Phương trình lôgarit là phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. + Bất phương trình lôgarit là bất phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit. 2. Phương trình vàbất phương trình lôgarit cơ bản. + Phương trình lôgarit cơ bản có dạng ${\log _a}f(x) = b.$ + Bất phương trình lôgarit cơ bản có dạng: ${\log _a}f(x) > b$; ${\log _a}f(x) \ge b$; ${\log _a}f(x) < b$; ${\log _a}f(x) \le b.$ 3. Phương pháp giải phương trình và bất phương trình lôgarit: Đưa về cùng cơ số, Đặt ẩn phụ, Mũ hóa. B. KỸ NĂNG CƠ BẢN 1. Điều kiện xác định của phương trình lôgarit. 2. Kiểm tra xem giá trị nào là nghiệm của phương trình lôgarit. 3. Tìm tập nghiệm của phương trình lôgarit. 4. Tìm số nghiệm của phương trình lôgarit. 5. Tìm nghiệm lớn nhất, hay nhỏ nhất của phương trình lôgarit. 6. Tìm mối quan hệ giữa các nghiệm của phương trình lôgarit: tổng, hiệu, tích, thương …. 7. Cho một phương trình lôgarit, nếu đặt ẩn phụ thì thu được phương trình nào (ẩn t). 8. Tìm điều kiện của tham số $m$ để phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. 9. Điều kiện xác định của bất phương trình lôgarit. 10. Tìm tập nghiệm của bất phương trình lôgarit. 11. Tìm nghiệm nguyên (tự nhiên) lớn nhất, nguyên (tự nhiên) nhỏ nhất của bất phương trình lôgarit. 12. Tìm điều kiện của tham số $m$ để bất phương trình lôgarit thỏa điều kiện về số nghiệm: có nghiệm, vô nghiệm, nghiệm thỏa điều kiện nào đó …. C. BÀI TẬP TRẮC NGHIỆM D. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6