Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và bài tập giới hạn có lời giải chi tiết - Nguyễn Bảo Vương

Tài liệu gồm 140 trang trình bày các dạng toán trong chương trình Đại số và Giải tích 11 chương 4 – Giới hạn, với các chủ đề: giới hạn dãy số, giới hạn hàm số và hàm số liên tục, sau mỗi phần đều có bài tập trắc nghiệm và tự luận giới hạn có lời giải chi tiết. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. 1. GIỚI HẠN DÃY SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Phương pháp: + Để chứng minh lim un = 0 ta chứng minh với mọi số a > 0 nhỏ tùy ý luôn tồn tại một số na sao cho |un| < a với mọi n > na. + Để chứng minh lim un = 1 ta chứng minh lim(un – 1) = 0. + Để chứng minh lim un = +∞ ta chứng minh với mọi số M > 0 lớn tùy ý, luôn tồn tại số tự nhiên nM sao cho un > M với mọi n > nM. + Để chứng minh lim un = -∞ ta chứng minh lim (-un) = +∞. + Một dãy số nếu có giới hạn thì giới hạn đó là duy nhất. Vấn đề 2 . Tìm giới hạn của dãy số dựa vào các định lý và các giới hạn cơ bản Phương pháp: Sử dụng các định lí về giới hạn, biến đổi đưa về các giới hạn cơ bản. + Khi tìm lim f(n)/g(n) ta thường chia cả tử và mẫu cho n^k, trong đó k là bậc lớn nhất của tử và mẫu. + Khi tìm lim [(f(n))^1/k – (g(n))^1/m] trong đó lim f(n) = lim g(n) = +∞ ta thường tách và sử dụng phương pháp nhân lượng liên hợp. 2. GIỚI HẠN CỦA HÀM SỐ Vấn đề 1 . Tìm giới hạn bằng định nghĩa Vấn đề 2 . Tìm giới hạn của hàm số + Bài toán 01: Tìm lim f(x) khi x → x0 biết xác định tại x0 + Bài toán 02. Tìm lim f(x)/g(x) khi x → x0 trong đó f(x0) = g(x0) = 0 + Bài toán 03: Tìm lim f(x)/g(x) khi x → ±∞, trong đó f(x), g(x) → ∞, dạng này ta còn gọi là dạng vô định ∞/∞ + Bài toán 04: Dạng vô định: ∞ – ∞ và 0.∞ + Bài toán 05: Dạng vô định các hàm lượng giác [ads] 3. HÀM SỐ LIÊN TỤC Vấn đề 1 . Xét tính liên tục của hàm số tại một điểm Phương pháp: + Tìm giới hạn của hàm số y = f(x) khi x → x0 và tính f(x0) + Nếu tồn tại lim f(x) khi x → x0 thì ta so sánh với lim f(x) khi x → x0 với f(x0) Vấn đề 2 . Xét tính liên tục của hàm số trên một tập Phương pháp: Sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ … Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó. Vấn đề 3 . Chứng minh phương trình có nghiệm Phương pháp: + Để chứng minh phương trình f(x) = 0 có ít nhất một nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và có hai số a, b ∈ D sao cho f(a).f(b) < 0. + Để chứng minh phương trình f(x) = 0 có k nghiệm trên D, ta chứng minh hàm số y = f(x) liên tục trên D và tồn tại k khoảng rời nhau (ai; ai+1) (i = 1, 2, …, k) nằm trong D sao cho f(ai).f(ai+1) < 0.

Nguồn: toanmath.com

Đăng nhập để đọc

124 bài tập trắc nghiệm quan hệ vuông góc có đáp án và lời giải chi tiết
Tài liệu gồm 44 trang tuyển chọn 124 bài tập trắc nghiệm quan hệ vuông góc có đáp án và lời giải chi tiết, tài liệu sẽ giúp các em học sinh lớp 11 học tốt hơn chủ đề Hình học 11 chương 3 – đường thẳng và mặt phẳng trong không gian, quan hệ vuông góc. Trích dẫn tài liệu : + Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất. A. M là trọng tâm tam giác ABC. B. M là tâm đường tròn ngoại tiếp tam giác ABC. C. M là trực tâm tam giác ABC. D. M là tâm đường tròn nội tiếp tam giác ABC. + Trong các mệnh đề sau mệnh đề nào đúng? A. Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c khi b song song với c (hoặc b trùng với c ). B. Góc giữa hai đường thẳng a và b bằng góc giữa hai đường thẳng a và c thì b song song với c. C. Góc giữa hai đường thẳng là góc nhọn. D. Góc giữa hai đường thẳng bằng góc giữa hai véctơ chỉ phương của hai đường thẳng đó. [ads] + Trong các mệnh đề sau đây, mệnh đề nào là đúng? A. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b vuông góc với đường thẳng c thì a vuông góc với c. B. Cho ba đường thẳng a, b, c vuông góc với nhau từng đôi một. Nếu có một đường thẳng d vuông góc với a thì d song song với b hoặc c. C. Nếu đường thẳng a vuông góc với đường thẳng b và đường thẳng b song song với đường thẳng c thì a vuông góc với c. D. Cho hai đường thẳng a và b song song với nhau. Một đường thẳng c vuông góc với a thì c vuông góc với mọi đường thẳng nằm trong mặt phẳng (a, b).
Hệ thống bài tập trắc nghiệm phép biến hình trong mặt phẳng tọa độ - Lương Tuấn Đức
Hệ thống bài tập trắc nghiệm phép biến hình trong mặt phẳng tọa độ được biên soạn bởi thầy Lương Tuấn Đức gồm 29 trang tuyển tập các bài toán trắc nghiệm có đáp án các chủ đề: phép tịnh tiến, phép quay, phép đối xứng tâm, phép đối xứng trục, phép vị tự, phép dời hình, phép đồng dạng trong chương trình Hình học 11 chương 1, các bài toán được phân loại dựa theo nội dung và mức độ nhận thức. + Ôn tập phép tịnh tiến lớp 11 THPT (lớp bài toán cơ bản mức độ 1). + Ôn tập phép tịnh tiến lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 1). + Ôn tập phép tịnh tiến lớp 11 THPT (lớp bài toán cơ bản mức độ 2). + Ôn tập phép quay lớp 11 THPT (lớp bài toán cơ bản mức độ 1). + Ôn tập phép quay lớp 11 THPT (lớp bài toán cơ bản mức độ 2). + Ôn tập phép quay lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 1). [ads] + Ôn tập phép vị tự lớp 11 THPT (lớp bài toán cơ bản mức độ 1). + Ôn tập phép vị tự lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 1). + Ôn tập phép đối xứng tâm lớp 11 THPT (lớp bài toán cơ bản mức độ 1). + Ôn tập phép đối xứng tâm lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 1). + Ôn tập phép đối xứng trục lớp 11 THPT (lớp bài toán cơ bản mức độ 1). + Ôn tập phép đối xứng trục lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 1). + Ôn tập phép dời hình, phép đồng dạng lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 1). + Ôn tập phép dời hình, phép đồng dạng lớp 11 THPT (lớp bài toán vận dụng cao – phân loại mức độ 2).
Bài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giải chi tiết
Tài liệu gồm 52 trang tuyển chọn bài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giải chi tiết do thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh biên soạn. Các chủ đề có trong tài liệu : + Bài 01. Phép biến hình: Quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M’ của mặt phẳng đó được gọi là phép biến hình trong mặt phẳng. + Bài 02. Phép tịnh tiến: Trong mặt phẳng cho vectơ v. Phép biến hình biến mỗi điểm M thành điểm M’ sao cho vectơ MM’ = vectơ v được gọi là phép tịnh tiến theo vectơ v. + Bài 03. Phép đối xứng trục: Cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành M’ sao cho d là đường trung trực của đoạn thẳng MM’ được gọi là phép đối xứng qua đường thẳng d hay phép đối xứng trục d. + Bài 04. Phép đối xứng tâm: Cho điểm I. Phép biến hình biến điểm I thành chính nó, biến mỗi điểm M khác I thành M’ sao cho I là trung điểm của MM’ được gọi là phép đối xứng tâm I. + Bài 05. Phép quay: Cho điểm O và góc lượng giác α. Phép biến hình biến điểm O thành chính nó, biến mỗi điểm M khác O thành điểm M’ sao cho OM = OM’ và góc lượng giác (OM; OM’) bằng α được gọi là phép quay tâm O góc α. + Bài 06. Phép dời hình: Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm bất kì. + Bài 07. Phép vị tự: Cho điểm O và số k ≠ 0. Phép biến hình biến mỗi điểm M thành điểm M’ sao cho vectơ OM = k.OM’ được gọi là phép vị tự tâm O tỉ số k. + Bài 08. Phép đồng dạng: Phép biến hình F được gọi là phép đồng dạng tỉ số k (k > 0) nếu với hai điểm M N, bất kì và ảnh M’, N’ tương ứng của chúng ta luôn có MN = k.M’N’. [ads] Bạn đọc có thể xem thêm một số tài liệu tương tự sau: + Phép dời hình và phép đồng dạng trong mặt phẳng – Trần Quốc Nghĩa + Bài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giải chi tiết – Đặng Việt Đông + Phương pháp giải các dạng toán phép dời hình và phép đồng dạng trong mặt phẳng – Trần Đình Cư
Bài tập phép dời hình và phép đồng dạng trong mặt phẳng có lời giải chi tiết - Đặng Việt Đông
Tài liệu gồm 115 trang tuyển tập các bài toán trắc nghiệm phép dời hình và phép đồng dạng trong mặt phẳng có đáp án và lời giải chi tiết. Nội dung tài liệu gồm 1. Phép tịnh tiến. + Dạng 1. Áp dụng định nghĩa và các tính chất phép tịnh tiến + Dạng 2. Phương pháp toạ độ 2. Phép đối xứng trục. + Dạng 1. Áp dụng định nghĩa và các tính chất phép đối xứng trục + Dạng 2. Phương pháp toạ độ [ads] 3. Phép đối xứng tâm + Dạng 1. Áp dụng định nghĩa và các tính chất phép đối xứng tâm + Dạng 2. Phương pháp toạ độ 4. Phép quay + Dạng 1. Áp dụng định nghĩa và các tính chất phép quay + Dạng 2. Phương pháp toạ độ 5. Phép dời hình 6. Phép vị tự 7. Phép đồng dạng

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6