Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề bội và ước của một số nguyên

Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề bội và ước của một số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. I. TÓM TẮT LÝ THUYẾT. II. CÁC DẠNG BÀI. Dạng 1 . Tìm bội và ước của số nguyên. – Tập hợp các bội của số nguyên a có vô số phần tử và bằng k a k Z. – Tập hợp các ước số của số nguyên a a 0 luôn là hữu hạn. Cách tìm: Trước hết ta tìm các ước số nguyên dương của phần số tự nhiên a (làm như trong tập số tự nhiên), chẳng hạn là p q r. Khi đó p q r cũng là ước số của a. Do đó các ước của a là p q r. Như vậy số các ước nguyên của a gấp đôi số các ước tự nhiên của nó. Số ước nguyên dương của số m n t a x y z là m 1 n 1. Dạng 2 . Vận dụng tính chất chia hết của số nguyên. Để chứng minh một biểu thức A chia hết cho số nguyên a. – Nếu A có dạng tích m n p thì cần chỉ ra m (hoặc n hoặc p) chia hết cho a. Hoặc m chia hết cho 1 a n chia hết cho 2 a p chia hết cho 3 a trong đó 1 2 3 a a a a. – Nếu A có dạng tổng m + n + p thì cần chỉ ra m n p cùng chia hết cho a hoặc tổng các số dư khi chia m n p cho a phải chia hết cho a. – Nếu A có dạng hiệu m – n thì cần chỉ ra m n chia cho a có cùng số dư. Vận dụng tính chất chia hết để làm bài toán về tìm điều kiện để một biểu thức thỏa mãn điều kiện cho hết. Dạng 3 . Tìm số nguyên x thỏa mãn điều kiện về chia hết. Áp dụng tính chất: Nếu a + b chia hết cho c và a chia hết cho c thì b chia hết cho c.

Nguồn: toanmath.com

Đăng nhập để đọc

Tóm tắt lý thuyết và bài tập trắc nghiệm phép cộng và phép trừ phân số
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép cộng và phép trừ phân số, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT I. PHÉP CỘNG PHÂN SỐ. 1. Quy tắc cộng hai phân số. a) Cộng hai phân số cùng mẫu. Muốn cộng hai phân số có cùng mẫu, ta cộng các tử và giữ nguyên mẫu a b a b m m m. b) Cộng hai phân số không cùng mẫu. Muốn cộng hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số cùng mẫu rồi cộng các tử và giữ nguyên mẫu chung. 2. Tính chất của phép cộng phân số. Giống như phép cộng số tự nhiên, phép cộng phân số cũng có các tính chất: giao hoán, kết hợp, cộng với số 0. II. PHÉP TRỪ PHÂN SỐ. 1. Số đối của một phân số. Số đối của phân số a b kí hiệu là a b. Ta có: 0 a a b b. 2. Quy tắc trừ hai phân số. – Muốn trừ hai phân số có cùng mẫu, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu. a b a b m m m. – Muốn trừ hai phân số không cùng mẫu, ta quy đồng mẫu những số đó rồi trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu chung. – Muốn trừ hai phân số, ta cộng số bị trừ với số đối của số trừ: a c a c b d b d. III. QUY TẮC DẤU NGOẶC. Quy tắc dấu ngoặc đối với phân số giống như quy tắc dấu ngoặc đối với số nguyên. IV. CÁC DẠNG TOÁN THƯỜNG GẶP. Dạng 1: Thực hiện phép tính. Dạng 2: Tìm x biết. Dạng 3: Toán lời văn. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1. THỰC HIỆN PHÉP TÍNH. DẠNG 2. TÌM x. DẠNG 3. TOÁN LỜI VĂN.
Tóm tắt lý thuyết và bài tập trắc nghiệm so sánh phân số, hỗn số dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề so sánh phân số, hỗn số dương, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT I. QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. Để quy đồng mẫu hai hay nhiều phân số có mẫu số dương, ta làm như sau: + Tìm một bội chung (thường là BCNN) của các mẫu để làm mẫu chung. + Tìm thừa số phụ của mỗi mẫu bằng cách chia mẫu chung cho từng mẫu. + Nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng. II. SO SÁNH HAI PHÂN SỐ. 1. So sánh hai phân số có cùng mẫu. Trong hai phân số cùng một mẫu số dương, phân số nào có tử lớn hơn thì phân số đó lớn hơn. 2. So sánh hai phân số không cùng mẫu. Muốn so sánh hai phân số không cùng mẫu, ta viết chúng dưới dạng hai phân số có cùng một mẫu dương rồi so sánh tử với nhau: Phân số nào có tử lớn hơn thì phân số đó lớn hơn. III. HỖN SỐ DƯƠNG. 1. Hỗn số. Một số có dạng b a c được gọi là một hỗn số trong đó a là phần nguyên, b c là phần phân số. Hỗn số b a c được đọc là a b phần c (vd 2 3 3 đọc là Ba hai phần ba). 2. Chuyển từ phân số sang hỗn số. Muốn viết một phân số (lớn hơn 1) a b trong đó a b c d (a chia b được thương c dư d) thì khi đó a b c d d d c c b b b b. Vậy a d c b b. 3. Chuyển từ hỗn số sang phân số. Muốn viết một hỗn số b a c về dạng một phân số ta làm như sau: b a c b a c c. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề mở rộng phân số, phân số bằng nhau, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm phân số. Với a b Z b 0 ta gọi a b là một phân số trong đó a là tử số (tử) và b là mẫu số (mẫu ) của phân số. Chú ý: Mọi số nguyên đều viết được dưới dạng phân số với mẫu số là 1 1 a a. 2. Hai phân số bằng nhau. Quy tắc bằng nhau của hai phân số a c b d nếu a d b c. 3. Tính chất cơ bản của phân số. Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Nếu chia cả tử và mẫu của một phân số với cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: PHÂN SỐ. DẠNG 2: PHÂN SỐ BẰNG NHAU. DẠNG 3: TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. DẠNG 4: RÚT GỌN PHÂN SỐ, PHÂN SỐ TỐI GIẢN.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có tâm đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT O là trung điểm của đoạn thẳng AB ta nói hai điểm A và B đối xứng nhau qua O. Hình có tâm đối xứng. Tâm đối xứng. Hình bình hành ABCD là hình có tâm đối xứng và giao điểm O của hai đường chéo là tâm đối xứng của hình bình hành ABCD. Đường tròn (O) là hình có tâm đối xứng. Tâm O là tâm đối xứng của đường tròn (O). B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6