Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Bình Định

Ngày 22 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Bình Định : + Cho tam giác ABC (AC < BC) nội tiếp trong đường tròn tâm O. Phân giác góc C cắt đường tròn (O) tại R. Gọi K, L lần lượt là trung điểm của AC và BC. Đường vuông góc với AC tại K cắt CR tại P, đường vuông góc với BC tại L cắt CR tại Q. Chứng minh rằng diện tích của các hình tam giác RPK và RQL bằng nhau. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc. Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp và bán kính mặt cầu nội tiếp hình chóp; V là thể tích khối chóp và h là đường cao của hình chóp từ đỉnh S. Tìm giá trị lớn nhất của biểu thức V(h – r)/R^2rh. [ads] + Trên bảng kẻ ô vuông 2 × n ghi các số dương sao cho tổng của hai số trong mỗi cột bằng 1. Chứng minh rằng có thể bỏ đi một số trong mỗi cột để trên mỗi hàng các số còn lại có tổng không vượt quá (n + 1)/4. + Tìm tất cả các số nguyên tố p có dạng a^2 + b^2 + c^2 với a, b, c là các số tự nhiên sao cho a^4 + b^4 + c^4 chia hết cho p. + Cho hai đa thức P(x) và Q(x) = aP(x) + bP'(x) với a, b là các số thực và a ≠ 0. Chứng minh rằng nếu đa thức Q(x) vô nghiệm thì đa thức P(x) cũng vô nghiệm.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi HSG lớp 12 môn Toán năm 2018 2019 cụm trường THPT huyện Yên Dũng Bắc Giang
Nội dung Đề thi HSG lớp 12 môn Toán năm 2018 2019 cụm trường THPT huyện Yên Dũng Bắc Giang Bản PDF Đề thi HSG Toán lớp 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang mã đề 121, đề được biên soạn theo hình thức trắc nghiệm kết hợp tự luận, phần trắc nghiệm gồm 40 câu, chiếm 40% số điểm, phần tự luận gồm 03 câu, chiếm 60% số điểm, học sinh làm bài thi trong 120 phút. Trích dẫn đề thi HSG Toán lớp 12 năm 2018 – 2019 cụm trường THPT huyện Yên Dũng – Bắc Giang : + Một trường THPT tại huyện Yên Dũng – Bắc Giang có 18 học sinh đạt giải học sinh giỏi cấp tỉnh, trong đó có 11 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên 6 học sinh trong số các học sinh trên đi tham quan học tập tại Hà Nội. Tính xác suất để có ít nhất một học sinh nam và một học sinh nữ được chọn. [ads] + Cho dãy số (un) được xác định bởi: u1 = 2, un = 2un-1 + 3n – 1. Công thức số hạng tổng quát của dãy số đã cho là biểu thức có dạng a2^n + bn + c, với a, b, c là các số nguyên, n ≥ 2; n thuộc N. Khi đó tổng a + b + c có giá trị bằng? + Gọi S là tập hợp các số tự nhiên có 3 chữ số được lập từ tập X = {0; 1; 2; 3; 4; 5; 6; 7}.Rút ngẫu nhiên một số thuộc tập S. Tính xác suất để rút được số mà trong số đó chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG lớp 12 môn Toán chuyên năm học 2018 2019 sở GD ĐT Đồng Nai
Nội dung Đề thi chọn HSG lớp 12 môn Toán chuyên năm học 2018 2019 sở GD ĐT Đồng Nai Bản PDF Đề thi chọn HSG Toán lớp 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được tổ chức ngày 18 tháng 01 năm 2019 nhằm tuyển chọn các em học sinh giỏi Toán đang theo học hệ chương trình chuyên tại tỉnh Đồng Nai để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Đồng Nai tham dự kỳ thi học sinh giỏi Toán chuyên cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán lớp 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho m, n là các số tự nhiên thỏa mãn 4m^3 + m = 12n^3 + n. Chứng minh rằng m – n là lập phương của một số nguyên. [ads] + Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H, K là trung điểm BC và G là hình chiếu vuông góc của H trên AK. Lấy D đối xứng G qua BC và I đối xứng C qua D. Tia phân giác góc ACB cắt AB tại F và tia phân giác góc BID cắt BD ở M, MF cắt AC tại E. 1) Chứng minh rằng D nằm trên đường tròn (O). 2) Tiếp tuyến tại A của (O) cắt BC ở X, XE cắt đường tròn ngoại tiếp tam giác EBM ở điểm thứ hai là Y. Chứng minh rằng đường tròn ngoại tiếp tam giác EYD tiếp xúc đường tròn (O). File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 2019 sở GD ĐT Hưng Yên
Nội dung Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 2019 sở GD ĐT Hưng Yên Bản PDF Sytu giới thiệu đến thầy, cô và các em nội dung đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên, đề gồm 01 trang với 06 bài toán tự luận, học sinh làm bài thi trong thời gian 180 phút, kỳ thi nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán THPT đang học tập tại các trường THPT tại tỉnh Hưng Yên để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Hưng Yên tham dự kỳ thi HSG Toán THPT cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên : + Cho hàm số y = x^4 – mx^2 + 2m – 2 (C) với m là tham số. Gọi A là một điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm các giá trị của m để tiếp tuyến của đồ thị (C) tại A cắt đường tròn (T): x^2 + y^2 = 4 tại hai điểm phân biệt tạo thành một dây cung có độ dài nhỏ nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a và góc ABC = 60 độ. Gọi E, F lần lượt là trung điểm của các cạnh SC, SD. Biết SA = SC = SD và mặt phẳng (ABEF) vuông góc với mặt bên (SCD), tính thể tích khối chóp S.ABCD theo a. + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + cx + 1 với a, b, c là số thực không âm. Biết rằng f(x) = 0 có 4 nghiệm thực, chứng minh f(2018) = 2019^4. File WORD (dành cho quý thầy, cô):
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 2019 sở GD ĐT Lào Cai
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 2019 sở GD ĐT Lào Cai Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai được biên soạn và tổ chức thi ngày 22 tháng 01 năm 2019 nhằm tìm kiếm và tuyên dương các em học sinh khối THPT giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Lào Cai, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài thi trong vòng 180 phút. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D, có CD = 2AD = 2AB. Gọi M (2;4) là điểm thuộc cạnh AB sao cho AB = 3AM . Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2x + y – 8 = 0. Tìm tọa độ các đỉnh của hình thang ABCD biết D thuộc đường thẳng d: x + y = 0 và điểm A thuộc đường thẳng d’: 3x + y – 8 = 0. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho góc ABM = MBI và MN vuông góc với BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. Tính thể tích của khối chóp S.AMCB và tính khoảng cách từ N đến mặt phẳng (SBC). + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2018.(e^2x – e^x + 1/3).(x^2 – 2x) với mọi x thuộc R. Tìm tất cả các số thực m để hàm số f(x^2 – 8x + m) có đúng 3 điểm cực trị sao cho x1^2 + x2^2 + x3^2 = 50 trong đó x1, x2, x3 là hoành độ của ba điểm cực trị đó.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6