Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

10 Đề Thi Minh Họa Học Kỳ 1 Toán 11 Kết Nối Tri Thức Có Đáp Án

Nguồn: thuvienhoclieu.com

Đăng nhập để đọc

Đề thi HK1 Toán 11 năm 2018 - 2019 trường THPT chuyên Lê Hồng Phong - TP. HCM
Đề thi HK1 Toán 11 năm 2018 – 2019 trường THPT chuyên Lê Hồng Phong – TP. HCM được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 90 phút, đề thi dành cho các lớp 11CV, 11CA, 11CTrN, 11D, 11SN, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2018 – 2019 trường THPT chuyên Lê Hồng Phong – TP. HCM : + Tại trạm xe buýt có 5 hành khách đang chờ xe đón, không ai quen nhau trong đó có anh A và chị B. Khi đó có 1 chiếc xe ghé trạm để đón khách, biết rằng lúc đó trên xe chỉ còn đúng 5 ghế trống mỗi ghế trống chỉ 1 người ngồi gồm có 1 dãy ghế trống 3 chỗ và 2 chỗ ghế đơn để chở 5 người tham khảo hình vẽ bên các ghế trống được ghi là 1, 2, 3, 4, 5 và 5 hành khách lên ngồi ngẫu nhiên vào 5 chỗ còn trống. Tính xác suất để anh A và chị B ngồi cạnh nhau? + Một quả bóng «siêu nẩy» rơi từ độ cao 30 mét so với mặt đất khi chạm đất nó nẩy lên cao với độ cao bằng 2/3 so với độ cao lần tước đó. Hỏi ở lần nẩy lên thứ 11 quả bóng đạt độ cao tối đa bao nhiêu mét so với mặt đất (lấy kết quả gần đúng 2 số sau dấu phẩy)? + Cho một đa giác đều 30 đỉnh. Có bao nhiêu tam giác cân có 3 đỉnh là 3 đỉnh của đa giác ban đầu?
Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 trường Lương Thế Vinh - Hà Nội
xin chia sẻ đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội, đề có mã 181 gồm 5 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm đề 90 phút (không tính thời gian giám thị phát đề), kỳ thi nhằm giúp giáo viên bộ môn và nhà trường đánh giá tổng quát những kiến thức Toán 11 mà các em đã được học trong giai đoạn HK1 vừa qua của năm học 2018 – 2019. Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường Lương Thế Vinh – Hà Nội : + Một lớp học tại trường THCS&THPT trường Lương Thế Vinh – Hà Nội có 3 tổ. Tổ I gồm có 3 học sinh nam và 7 học sinh nữ; tổ II gồm có 5 học sinh nam và 5 học sinh nữ; tổ III gồm có 6 học sinh nam và 4 học sinh nữ. Cô giáo chủ nhiệm cần chọn ra một học sinh nam và một học sinh nữ để tham gia hoạt động tình nguyện. Hỏi cô giáo có bao nhiêu cách chọn, nếu cô muốn chọn hai em học sinh ở hai tổ khác nhau? [ads] + Giải bóng đá Vô địch quốc gia Việt Nam 2018 (Nuti Cafe VLeague 2018) có 14 đội bóng tham dự theo thể thức vòng tròn tính điểm lượt đi – lượt về (nghĩa là 2 đội bất kỳ sẽ đấu với nhau đúng 2 trận). Hỏi có tất cả | bao nhiêu trận đấu diễn ra trong cả giải đấu đó? + Trong không gian, điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng (P) song song với mặt phẳng (Q)? (giả thiết rằng các mặt phẳng đều phân biệt). A. (P) và (Q) không có điểm chung. B. (P) chứa vô số đường thẳng song song với (Q). C. (P) chứa hai đường thẳng cắt nhau và chúng cùng song song với (Q). D. (P) và (Q) cùng song song với mặt phẳng R.
Đề thi học kỳ 1 Toán 11 năm học 2018 - 2019 trường THPT Marie Curie - Hà Nội
Đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Marie Curie – Hà Nội có mã đề 003 gồm 2 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 16 câu, chiếm 40% số điểm, phần tự luận gồm 3 câu, chiếm 60% số điểm, học sinh có 90 để hoàn thành bài thi, kỳ thi nhằm đánh giá lại toàn diện kiến thức môn Toán của học sinh khối 11 trường THPT Marie Curie, thành phố Hà Nội trong giai đoạn học kỳ 1 vừa qua để làm cơ sở đánh giá, xếp loại học lực, phát hiện các em học sinh giỏi môn Toán 11 … Trích dẫn đề thi học kỳ 1 Toán 11 năm học 2018 – 2019 trường THPT Marie Curie – Hà Nội : + Gọi P là tập các số tự nhiên gồm 4 chữ số khác nhau được lập từ tập {1,2,5,7,8}. Chọn ngẫu nhiên tự P một số tự nhiên. Tính xác suất để số được chọn lớn hơn 2018. [ads] + Hai học sinh A và B (trường THPT Marie Curie, Hà Nội) cùng chơi ném bóng rổ. Biết xác suất ném trúng rổ của A và B lần lượt là 0.6 và 0.7. Xác suất để trong một lượt ném của A và B, có ít nhất một bạn ném trúng rổ là? + Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SC và AB. Chứng minh OM // (SAB). Xác định giao điểm của BM với (SAD). Gọi (α) là mặt phẳng chứa MN và (α) // AD. Xác định và tính điện tích thiết diện tạo bởi (α) với hình chóp biết rằng tất cả các cạnh của hình chóp đều bằng 10cm.
Đề thi học kỳ 1 Toán 11 năm 2018 - 2019 trường THPT chuyên ĐHSP - Hà Nội
Sáng nay (ngày 03 tháng 12 năm 2018), trường THPT chuyên Đại học Sư Phạm – Hà Nội đã tiến hành tổ chức kỳ thi HKI Toán 11, kết thúc chương trình Toán 11 giai đoạn học kỳ 1. Đề thi học kỳ 1 Toán 11 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm 20 câu hỏi và bài toán, chiếm 50% số điểm, phần tự luận gồm 3 bài toán, chiếm 50% số điểm, với hình thức thi kết hợp này, giáo viên vừa đưa được nhiều đơn vị kiến thức vào đề thi, kiểm tra khả năng nhạy bén tìm ra kết quả, vừa đánh giá được khả năng suy luận, khả năng trình bày lời giải của học sinh, đề thi có thời gian làm bài là 90 phút. Trích dẫn đề thi học kỳ 1 Toán 11 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội : + Tìm mệnh đề sai trong các mệnh đề sau: A. Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại duy nhất một đường thẳng a chứa M và song song với (α). B. Cho đường thẳng a và b chéo nhau. Khi đó tồn tại duy nhất mặt phẳng (α) chứa a và song song với b. C. Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại duy nhất một mặt phẳng (β) chứa M và song song với (α). D. Cho đường thẳng a và mặt phẳng (α) song song với nhau. Khi đó tồn tại duy nhất một mặt phẳng (β) chứa a và song song với (α). [ads] + Cho tứ diện S.ABCD có đáy ABCD là hình thang (AB || CD). Gọi M, N và P lần lượt là trung điểm của BC, AD và SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là? A. đường thẳng qua M và song song với SC. B. đường thẳng qua P và song song với AB. C. đường thẳng PM. D. đường thẳng qua S và song song với AB. + Cho dãy số (un) với un = (n + 2018)/(2018n + 1). Chọn khẳng định đúng trong các khẳng định sau: A. Dãy (un) bị chặn dưới nhưng không bị chặn trên. B, Dãy (un) bị chặn. C. Dãy (un) không bị chặn trên, không bị chặn dưới. D. Dãy (un) bị chặn trên nhưng không bị chặn dưới.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6