Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tìm tập xác định của hàm số lũy thừa - mũ - lôgarit có chứa tham số

Tài liệu gồm 16 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Tìm tập xác định của hàm số lũy thừa – mũ – lôgarit có chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. HÀM SỐ LŨY THỪA 1. Định nghĩa: Hàm số y x với được gọi là hàm số lũy thừa. 2. Tập xác định Tập xác định của hàm số y x là với là số nguyên dương với là số nguyên âm hoặc bằng 0 với không nguyên. 3. Đạo hàm Hàm số y x với có đạo hàm với mọi x 0 và 1 x x. 4. Tính chất của hàm số lũy thừa trên khoảng y x 0. Đồ thị hàm số luôn đi qua điểm. Khi  x 0 hàm số luôn đồng biến. Trong trường hợp này 0 lim x x do đó đồ thị hàm số không có đường tiệm cận. Khi 1 0 0 y x x hàm số luôn nghịch biến. Trong trường hợp này 0 lim 0 do đó đồ thị hàm số nhận trục Ox là đường tiệm cận ngang và trục Oy là đường tiệm cận đứng. 5. Đồ thị hàm số lũy thừa a y x trên khoảng 0 Đồ thị hàm số y x luôn đi qua điểm I. HÀM SỐ MŨ 1. Định nghĩa: Cho số thực dương a 1. Hàm số x y a được gọi là hàm số mũ cơ số a. 2. Tập xác định: P x y a xác định khi P x xác định. Đối với y a thì có D. Tập giá trị của hàm số mũ là T. 3. Đạo hàm: Công thức thừa nhận. 4. Đồ thị hàm số mũ: x y a. Đồ thị hàm số nhận trục hoành làm tiệm ngang. Đồ thị hàm số đi qua điểm (0;1) và (1;a) nằm về phía bên trên trục hoành x y a x. HÀM SỐ LÔGARIT 1. Định nghĩa Hàm số dạng log a y x a a được gọi là hàm số logarit cơ số a. 2. Tập xác định và tập giá trị Tập xác định: D 0. Tập giá trị: T. 3. Tính đơn điệu và đồ thị Khi a 1 thì hàm số loga y x đồng biến trên D khi đó nếu log log a a f x g x f x g x Khi 0 1 a thì hàm số loga y x nghịch biến trên D khi đó nếu: log log.

Nguồn: toanmath.com

Đăng nhập để đọc

Tóm tắt lý thuyết và bài tập trắc nghiệm hàm số mũ và hàm số logarit
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm hàm số mũ và hàm số logarit, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 2: hàm số luỹ thừa, hàm số mũ và hàm số lôgarit. Bên cạnh tài liệu hàm số mũ và hàm số logarit dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm hàm số mũ và hàm số logarit: A. LÝ THUYẾT CẦN NẮM VỮNG I. HÀM SỐ LOGARIT 1. Định nghĩa hàm số lôgarit. 2. Đạo hàm hàm số lôgarit. 3. Khảo sát hàm số lôgarit: Tập xác định, Chiều biến thiên, Tiệm cận, Đồ thị. II. HÀM SỐ MŨ 1. Định nghĩa hàm số mũ. 2. Đạo hàm của hàm số mũ. 3. Khảo sát hàm số mũ: Tập xác định, Chiều biến thiên, Tiệm cận, Đồ thị. B. BÀI TẬP TRẮC NGHIỆM Phần 1: Bài tập mức nhận biết và thông hiểu. Phần 2: Bài tập mức độ vận dụng thấp. Phần 3: Bài tập mức vận dụng cao. C. ĐÁP ÁN VÀ LỜI GIẢI CHI TIẾT
Trắc nghiệm VD - VDC mũ - logarit - Đặng Việt Đông
Với mục đích hỗ trợ các em học sinh khối 12 trong quá trình học tập nâng cao các dạng toán trong chương trình Giải tích 12 chương 2 – hàm số lũy thừa, hàm số mũ và hàm số logarit, ôn tập hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, thầy Đặng Việt Đông biên soạn cuốn tài liệu trắc nghiệm vận dụng – vận dụng cao chuyên đề mũ và logarit. Tài liệu trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông gồm 116 trang với các bài tập trắc nghiệm mũ và logarit ở mức độ vận dụng và vận dụng cao, được trích từ các đề thi thử THPT Quốc gia môn Toán của các trường, sở GD&ĐT, đề tham khảo – đề minh họa – đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo, các bài tập về mũ và logarit được phân tách thành các dạng toán cụ thể, có đáp án và lời giải chi tiết. [ads] Các dạng toán được đề cập trong tài liệu trắc nghiệm VD – VDC mũ – logarit – Đặng Việt Đông: + Dạng toán 1. Lũy thừa – mũ và lôgarit, hàm số mũ và hàm số lôgarit. + Dạng toán 2. Giá trị lớn nhất và giá trị nhỏ nhất hàm số mũ và lôgarit. + Dạng toán 3. Phương trình và bất phương trình mũ. + Dạng toán 4. Phương trình và bất phương lôgarit. + Dạng toán 5. Ứng dụng mũ và logarit vào việc giải các bài toán thực tế. Xem thêm : Trắc nghiệm VD – VDC hàm số – Đặng Việt Đông
Tuyển tập các bài toán mũ và logarit hay và đặc sắc - Nguyễn Xuân Nhật
Tài liệu gồm 88 trang được biên soạn bởi tác giả Nguyễn Xuân Nhật tuyển chọn các câu hỏi và bài toán trắc nghiệm mũ và logarit hay và đặc sắc, có đáp án và lời giải chi tiết, đây là món quà của tác giả gửi đến các em học sinh lớp 12 nhân dịp Tết trung thu 2019. Tài liệu bao gồm 4 chủ đề: + Chủ đề 1. Phương trình bất phương trình mũ và logarit. + Chủ đề 2. Cực trị mũ và logarit. + Chủ đề 3. Đồ thị mũ và logarit. + Chủ đề 4. Ứng dụng mũ và logarit vào bài toán thực tế. [ads] Trích dẫn tài liệu tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật: + Cho hàm số y = 1/(x – 1) + 1/(x – 2) + … + 1/(x – 2019) + 1/(x – 2020) và y = e^x – m + 1 (m tham số) có đồ thị lần lượt là (C1) và (C2). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [-2020;2020] để (C1) cắt (C2) tại đúng 2020 nghiệm phân biệt? + Cho các số thực a, b, c thuộc (1;+∞) thỏa mãn a^10 ≤ b và loga b + 2logb c + 5logc a = 12. Tìm giá trị nhỏ nhất của biểu thức P = 2loga c + 5logc b + 10logb a. + Vợ chồng anh A dự định lương của vợ dùng chi trả sinh hoạt phí, lương của anh A được gửi tiết kiệm hàng tháng. Biết đầu tháng này anh mới được tăng lương nhận mức lương 6 triệu đồng/tháng và cứ sau 2 năm lương của anh được tăng lên 10% so với 2 năm trước đó. Giả sử rằng dự định của vợ chồng anh được thực hiện từ đầu tháng này và lãi suất ngân hàng ổn định ở 0,5 % một tháng. Tính số tiền vợ chồng anh A tiết kiệm được sau 50 tháng.
Tài liệu tự học hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 47 trang bao gồm lý thuyết, ví dụ mẫu và bài tập tự luyện chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit, giúp học sinh học tốt chương trình Giải tích 12 chương 2. Khái quát nội dung tài liệu tự học hàm số lũy thừa, hàm số mũ và hàm số logarit: PHẦN 1 . HÀM SỐ LŨY THỪA-HÀM SỐ MŨ-HÀM SỐ LOGARIT. A. LÝ THUYẾT 2.1 Lũy thừa – Hàm số lũy thừa. 2.1.1 Lũy thừa. 2.1.2 Hàm số lũy thừa: y = x^α. 2.2 Logarit. 2.2.1 Kiến thức cơ bản. 2.3 Hàm số mũ – Hàm số logarit. 2.3.1 Hàm số mũ: y = a^x (0 < a khác 1). 2.3.2 Hàm số logarit: y = logax (0 < a khác 1 và x > 0). 2.3.3 Bảng đạo hàm. B. BÀI TÂP TỰ LUẬN 2.4 Bài tập về lũy thừa. 2.4.1 Dạng 1: Tính giá trị biểu thức. 2.4.2 Dạng 2: Đơn giản biểu thức. 2.4.3 Dạng 3: Lũy thừa hữu tỉ. 2.4.4 Dạng 4: So sánh cặp số. 2.4.5 Dạng 5: Bài toán thực tế. 2.5 Bài tập về logarit. 2.5.1 Dạng 1: Tính giá trị biểu thức. 2.5.2 Dạng 2: Biến đổi logarit. 2.5.3 Dạng 3: Chứng minh đẳng thức logarit. 2.5.4 Dạng 4: So sánh cặp số. 2.5.5 Dạng 4: Bài toán thực tế. 2.6 Bài tập hàm số mũ-hàm số logarit. 2.6.1 Dạng 1: Tập xác định hàm số. 2.6.2 Dạng 2: Đạo hàm. 2.6.3 Dạng 3: Chứng minh hàm số đã cho thỏa hệ thức cho trước. 2.6.4 Dạng 4: Giải phương trình, bất phương trình. 2.6.5 Dạng 5: Giá trị lớn nhất, giá trị nhỏ nhất. [ads] PHẦN 2 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT. A. PHƯƠNG TRÌNH 2.7 Phương trình mũ. 2.7.1 Phương trình mũ cơ bản. 2.7.2 Một số phương pháp giải phương trình mũ. 2.7.2.1 Phương pháp đưa về cùng cơ số. 2.7.2.2 Phương pháp logarit hóa. 2.7.2.3 Phương pháp đặt ẩn phụ. 2.7.2.4 Sử dụng tính đơn điệu của hàm số. 2.7.2.5 Phương trình tích. 2.7.3 Bài toán liên quan tham số m. 2.8 Phương trình logarit. 2.8.1 Phương trình logarit cơ bản. 2.8.2 Một số phương pháp giải phương trình logarit. 2.8.2.1 Phương pháp đưa về cùng cơ số. 2.8.2.2 Phương pháp mũ hóa. 2.8.2.3 Phương pháp đặt ẩn phụ. 2.8.2.4 Sử dụng tính đơn diệu hàm số. 2.8.3 Bài toán liên quan tham số m. B. BẤT PHƯƠNG TRÌNH 2.9 Bất phương trình mũ và bất phương trình logarit. 2.9.1 Bất phương trình mũ. 2.9.2 Bất phương trình logarit. 2.10 Hệ phương trình mũ và logarit. 2.11 Các ví dụ. 2.12 Bài tập bất phương trình, hệ phương trình mũ và logarit. 2.12.1 Giải các bất phương trình. 2.12.2 Giải hệ phương trình.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6