Nội dung Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD ĐT Quảng NamĐề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam: Đề tuyển sinh chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD ĐT Quảng Nam Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam. Đề thi này bao gồm đáp án và lời giải chi tiết, kỳ thi sẽ diễn ra vào ngày 03 - 05 tháng 06 năm 2021. Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Quảng Nam: Cho parabol (P): y^2 = 2x và đường thẳng (d): y = mx + m^2 (m là tham số). Chứng minh rằng (d) luôn cắt (P) tại hai điểm A, B sao cho điểm M là trung điểm của đoạn thẳng AB, hai điểm H, K lần lượt là hình chiếu vuông góc của A, B trên trục hoành. Hãy tính độ dài đoạn thẳng KH. Cho hình vuông ABCD có tâm O, điểm E nằm trên đoạn thẳng OB (E khác O, B), H là hình chiếu vuông góc của C trên đường thẳng AE. Gọi F là giao điểm của AC và DH. a) Chứng minh rằng HD là tia phân giác của góc AHC. b) Chứng minh rằng diện tích hình vuông ABCD bằng hai lần diện tích tứ giác AEFD. Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F, E. Gọi H là giao điểm của BE và CF, đường thẳng AH cắt BC tại D. a) Chứng minh rằng tứ giác ODFE nội tiếp đường tròn. b) Gọi K là giao điểm của AH và EF, I là trung điểm của AH. Đường thẳng CI cắt đường tròn (O) tại M (M khác C). Chứng minh rằng CI vuông góc với KM.
Nguồn: sytu.vn