Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 10 môn Toán năm 2014 2015 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh Hà Tĩnh 2014-2015 Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh Hà Tĩnh 2014-2015 Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi học sinh giỏi Toán cấp tỉnh lớp 10 năm 2014-2015 của Sở Giáo dục và Đào tạo tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Trong mặt phẳng Oxy, cho tam giác ABC. Gọi H, K lần lượt là chân đường cao từ các đỉnh B, C của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết H(1, 3), K(5, 1) và phương trình đường thẳng BC là x - 3 = 4(y) và điểm B có hoành độ âm. a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì cos^2A + cos^2C = 2cosB. b) Cho các số thực dương a, b, c thỏa mãn ab + bc + ca = 8. Tìm giá trị nhỏ nhất của biểu thức P = (3/a) + (11/b) + (11/c). Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f(x) = ax^2 + bx + c có a ≠ 0 và b^2 - 4ac ≠ 0. Tìm điều kiện cần và đủ đối với các số m, n, p để với mọi f(x) thuộc E ta đều có g(x) = f(x) + mx + n và cx^2 + px + a cũng thuộc E. Đây chỉ là một phần nhỏ trong đề thi học sinh giỏi Toán cấp tỉnh lớp 10 năm 2014-2015 của sở GD&ĐT Hà Tĩnh, hy vọng các em học sinh sẽ rèn luyện và thử sức để đạt được kết quả tốt trong kiểm tra này.
Nguồn: sytu.vn