Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT quốc gia 2015 môn Toán trường Bắc Yên Thành lần 1

Nguồn: onluyen.vn

Đăng nhập để đọc

Đề kiểm tra định kỳ lần 2 Toán 12 năm 2019 - 2020 trường chuyên Bắc Ninh
Ngày … tháng 12 năm 2019, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng định kỳ lần thứ hai môn Toán lớp 12 năm học 2019 – 2020, nhằm đánh giá tình hình học tập môn Toán của học sinh khối 12 và rèn luyện để hướng đến kỳ thi THPT Quốc gia môn Toán năm 2020. Đề kiểm tra định kỳ lần 2 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh mã đề 201 được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 201, 202, 203, 204, 205, 206, 207, 208. Trích dẫn đề kiểm tra định kỳ lần 2 Toán 12 năm 2019 – 2020 trường chuyên Bắc Ninh : + Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước vào cốc rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một phần ba lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc). [ads] + Anh Dũng đem gửi tiết kiệm số tiền là 400 triệu đồng ở hai loại kì hạn khác nhau. Anh gửi 250 triệu đồng theo kì hạn 3 tháng với lãi suất x% một quý. Số tiền còn lại anh gửi theo kì hạn 1 tháng với lãi suất 0,25% một tháng. Biết rằng nếu không rút lãi ra thì số lãi sẽ được nhập vào số gốc để tính lãi cho kì hạn tiếp theo. Sau một năm số tiền cả gốc và lãi của anh là 416.780.000 đồng. Tính x. + Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3a/2. Diện tích của thiết diện đó bằng?
Đề sát hạch lần 1 Toán 12 năm 2019 - 2020 trường Thuận Thành 2 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 đề sát hạch lần 1 Toán 12 năm học 2019 – 2020 trường THPT Thuận Thành số 2 – Bắc Ninh, đề thi có mã đề 002 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm giúp giáo viên bộ môn kiểm tra định kỳ chất lượng Toán 12 của học sinh. Trích dẫn đề sát hạch lần 1 Toán 12 năm 2019 – 2020 trường Thuận Thành 2 – Bắc Ninh : + Cho hình trụ (T) có đáy là các đường tròn tâm O và O, bán kính bằng 1, chiều cao hình trụ bằng 2. Các điểm A, B lần lượt nằm trên hai đường tròn (O) và (O’) sao cho góc góc giữa hai đường thẳng OA, O’B bằng 60°. Tính diện tích toàn phần của tứ diện OAO’B. [ads] + Gọi S là tập chứa các giá trị tham số m để hai đồ thị hàm số y = x(x^4 – mx^3 + x – 1) + m, y = x^2 cắt nhau theo số giao điểm nhiều nhất đồng thời các giao điểm cùng nằm trên đường tròn có bán kính bằng 1. Hỏi tập S có tất cả bao nhiêu phần tử. + Cho hình chóp S.ABC có SA = SB = SC = 4, đáy là tam giác vuông tại A. Một hình nón (N) có đỉnh S và đáy là đường tròn ngoại tiếp tam giác ABC. Thể tích lớn nhất của khối nón (N) bằng bao nhiêu?
Đề khảo sát chất lượng Toán 12 lần 2 năm 2019 - 2020 trường Quế Võ 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 12 lần 2 năm học 2019 – 2020 trường THPT Quế Võ 1 – Bắc Ninh, đề thi có mã đề 615 gồm 06 trang với 50 câu trắc nghiệm, học sinh làm bài trong khoảng thời gian 90 phút, kỳ thi nhằm giúp học sinh khối 12 rèn luyện thường xuyên để nâng cao kiến thức – kỹ năng giải Toán trắc nghiệm, hướng đến một kỳ thi THPT Quốc gia môn Toán năm 2020 thành công. Trích dẫn đề khảo sát chất lượng Toán 12 lần 2 năm 2019 – 2020 trường Quế Võ 1 – Bắc Ninh : + Bạn A trúng tuyển vào Trường Đại học Ngoại Thương nhưng vì không đủ tiền nộp học phí nên bạn A quyết định vay ngân hàng trong bốn năm, mỗi năm 4 triệu đồng để nộp học phí với lãi suất ưu đãi 3%/năm. Ngay sau khi tốt nghiệp Đại học, bạn A thực hiện trả góp hàng tháng cho ngân hàng số tiền (không đổi) với lãi suất theo cách tính mới là 0,25%/tháng trong vòng 5 năm. Tính số tiền hàng tháng bạn A phải trả cho ngân hàng (kết quả làm tròn tới hàng đơn vị). [ads] + Một hộp dựng bóng tennis có dạng hình trụ. Biết rằng hộp chứa vừa khít ba quả bóng tennis được xếp theo chiều dọc, các quả bóng tennis có kích thước như nhau. Thể tích phần không gian còn trống trong hộp chiếm tỉ lệ a% so với thể tích của hộp bóng tennis. Số a gần nhất với số nào sau đây? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB, N là điểm thuộc cạnh SC sao cho SN = 2NC, P là điểm thuộc cạnh SD sao cho SP = 3DP. Mặt phẳng (MNP) cắt SA tại Q. Biết khối chóp S.MNPQ có thể tích bằng 1, khối đa diện ABCD.QMNP có thể tích bằng?
Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa
Ngày … tháng 11 năm 2019, trường THPT Thạch Thành 3 – Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất đối với học sinh khối 12 của nhà trường trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 3 – Thanh Hóa có mã đề 001, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để làm bài KSCL Toán 12. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Gọi (H1) là phần đa diện chứa điểm S có thể tích V1, (H2) là phần đa diện còn lại có thể tích V2. Tính tỉ số thể tích V1/V2. + Một hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi kích thước như nhau, n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong ba viên bi lấy được có đủ 3 màu là 9/28. Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. [ads] + Cho phương trình: (cos4x – cos2x + 2(sinx)^2)/(cosx + sinx) = 0. Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác. + Một công ty muốn làm một đường ống dẫn dầu từ kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 000 000 đồng và dưới nước là 260 000 000 đồng. + Người ta muốn xây một cái bể hình hộp đứng có thể tích V = 18 (m3), biết đáy bể là hình chữ nhật có chiều dài gấp 3 lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6