Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải phương trình hàm bằng phương pháp thêm biến - Nguyễn Tài Chung

Tài liệu gồm 60 trang được biên soạn bởi thầy Nguyễn Tài Chung (giáo viên Toán trường THPT chuyên Hùng Vương, tỉnh Gia Lai), hướng dẫn giải phương trình hàm bằng phương pháp thêm biến, giúp học sinh ôn tập thi học sinh giỏi môn Toán. Khái quát nội dung tài liệu giải phương trình hàm bằng phương pháp thêm biến – Nguyễn Tài Chung: A. GIỚI THIỆU PHƯƠNG PHÁP THÊM BIẾN Vào năm 2012, tôi có viết chuyên đề “Giải phương trình hàm bằng phương pháp thêm biến” (tài liệu tham khảo [1]). Trong quá trình giảng dạy tôi có sưu tầm thêm một số bài tập mới, và gần đây có tham khảo thêm bài viết “Phương pháp thêm biến trong giải phương trình hàm” của tác giả Võ Quốc Bá Cẩn (tài liệu tham khảo [3]). Ý tưởng của phương pháp này rất đơn giản như sau: Khi gặp những phương trình hàm với cặp biến tự do x, y, bằng cách thêm biế mới z (hoặc thêm một vài biến mới), ta sẽ tính một biểu thức nào đó chứa x, y, z theo hai cách khác nhau, từ đây ta thu được một phương trình hàm theo ba biến x, y, z, sau đó chọn z bằng những giá trị đặc biệt hoặc biến đổi, rút gọn phương trình hàm theo ba biến x, y, z để thu được những phương trình hàm mới, hướng tới kết quả bài toán. Về mặt ý tưởng thì đơn giản, vì thực ra nó là phương pháp thế khi giải phương trình hàm. Tuy nhiên công dụng của phương pháp này lại mạnh mẽ, giải quyết được nhiều bài toán; việc thêm một vài biến mới sẽ giúp phép thế trở nên linh hoạt, uyển chuyển và có nhiều lựa chọn hơn, từ đó phát hiện được nhiều tính chất thú vị của hàm số cần tìm. [ads] B. MỘT SỐ KẾT QUẢ CƠ BẢN Trong mục này ta sẽ phát biểu và chứng minh một số kết quả (thông qua các bài toán) sẽ được sử dụng trong chuyên đề này. Lưu ý rằng đây là những bài toán rất cơ bản, cần thiết cho những ai muốn tìm hiểu về phương trình hàm (cả kết quả và lời giải), chẳng hạn như bài toán 4, 5, khi đi thi học sinh giỏi là được phép sử dụng mà không cần chứng minh lại. C. PHƯƠNG PHÁP THÊM BIẾN ĐỐI VỚI PHƯƠNG TRÌNH HÀM CÓ TÍNH ĐỐI XỨNG Đối với những phương trình hàm có tính đối xứng theo cặp biến x và y, khi ta thay cặp (x; y) bởi cặp (y; x) thì phương trình hàm vẫn không đổi, tức là ta không thu được gì cả. Những trường hợp như vậy ta thường thêm biến z để tạo ra sự bất đối xứng và thu được những phương trình hàm khác. D. PHƯƠNG PHÁP THÊM BIẾN TRONG LỚP HÀM ĐƠN ĐIỆU E. PHƯƠNG PHÁP THÊM BIẾN TRONG LỚP HÀM LIÊN TỤC Trong mục này chúng ta sẽ xem xét một số phương trình hàm có giả thiết hàm số liên tục, được giải bằng phương pháp thêm biến. Lưu ý rằng kết quả bài toán 4 ở trang 3 tiếp tục được sử dụng nhiều. F. BÀI TẬP Đề bài, hướng dẫn và lời giải chi tiết.

Nguồn: toanmath.com

Đăng nhập để đọc

Phương trình hàm qua các cuộc thi trên thế giới năm 2022
Tài liệu gồm 53 trang, được biên soạn bởi tác giả Đoàn Quang Đăng, tuyển chọn các bài toán phương trình hàm qua các cuộc thi trên thế giới năm 2022, có đáp án và lời giải chi tiết; hỗ trợ học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi Toán THPT. Mục lục : 1 Đề bài 2. 1.1 Phương trình hàm trên tập số thực 2. 1.2 Phương trình hàm trên tập số thực dương 3. 1.3 Phương trình hàm trên tập rời rạc 4. 1.4 Bất phương trình hàm 5. 2 Lời giải 6. 2.1 Phương trình hàm trên tập số thực 6. 2.2 Phương trình hàm trên tập các số thực dương 23. 2.3 Phương trình hàm trên tập rời rạc 38. 2.4 Bất phương trình hàm 47.
Đồ thị của hàm số đa thức
Tài liệu chủ đề đồ thị của hàm số đa thức gồm 10 trang, được biên soạn bởi tác giả Lê Phúc Lữ (ĐH KHTN TP HCM) và Trần Nguyễn Thanh Danh (PTNK TP HCM), hướng tới kỳ thi chọn học sinh giỏi Toán THPT cấp Quốc gia năm 2023.
Hai bổ đề trong bài toán phương trình hàm trên tập các số thực dương
Phương trình hàm trên tập các số thực dương luôn là các bài toán hay và khó. Để giải quyết các bài toán này chúng ta cần vận dụng nhiều kỹ thuật kinh điển trong giải toán phương trình hàm kết hợp nhuần nhuyễn với các kiến thức Đại số và Giải tích. Trong bài viết này, các tác giả Đoàn Quang Đăng (THPT Chuyên Bến Tre) và Võ Trần Hiền (THPT Chuyên Tiền Giang) sẽ giới thiệu hai bổ đề khá thú vị dùng để giải quyết các lớp bài toán có thể đưa về dạng f(x + A) = f(x) + B và f(x + A) + B = f(x + C) + D. Mục lục : 1 Bổ đề 1 – f(x + A) = f(x) + B 2. 2 Bổ đề 2 – f(x + A) + B = f(x + C) + D 10. 3 Bài tập rèn luyện 17. 4 Tài liệu tham khảo 18. + Diễn đàn Art of Problem Solving. + Nhóm Hướng tới Olympic VN. + Một góc nhìn tổng quát cho bài phương trình hàm thi HSG QG 2022 – Nguyễn Huy Trung. + Hai bổ đề trong bài toán phương trình hàm trên tập số thực dương – Đoàn Quang Đăng. + Vietnamese Mathematical Competitions 2022 Booklet.
Phương pháp thế và sử dụng tính chất ánh xạ giải toán phương trình hàm trên R
Tài liệu gồm 59 trang, hướng dẫn áp dụng phương pháp thế và phương pháp sử dụng tính chất ánh xạ trong việc giải bài toán phương trình hàm trên R. Trong chương trình chuyên Toán ở các trường THPT chuyên, phương trình hàm là một chuyên đề quan trọng. Hiện nay tài liệu về phương trình khá phong phú. Tuy vậy, việc giải được phương trình hàm vẫn là vấn đề khó đối với nhiều học sinh. Trong chuyên đề nhỏ này, chúng tôi sẽ trình bày hai phương pháp thông dụng và quan trọng để giải phương trình hàm trên tập R. Đó là phương pháp thế và phương pháp sử dụng tính chất ánh xạ. I. Phương pháp thế trong giải phương trình hàm. 1. Một số lưu ý khi sử dụng phương pháp thế. 2. Các ví dụ. 3. Bài tập vận dụng. 4. Bài tập củng cố. II. Sử dụng tính chất ánh xạ để giải phương trình hàm. 1. Nhắc lại một số khái niệm và tính chất của ánh xạ. 1.1. Ánh xạ. 1.2. Đơn ánh, toàn ánh, song ánh. 1.3. Ánh xạ ngược của một song ánh. 1.4. Ánh xạ hợp. 2. Các ví dụ. 2.1. Sử dụng tính đơn ánh giải phương trình hàm. 2.2. Sử dụng tính toàn ánh giải phương trình hàm. 2.3. Sử dụng tính song ánh giải phương trình hàm. 3. Bài tập vận dụng. 4. Bài tập củng cố.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6