Đề thi vào 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Hùng Vương Gia Lai
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Hùng Vương Gia Lai Bản PDF -
Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2021-2022 trường chuyên Hùng Vương Gia Lai Đề thi vào 10 môn Toán (chuyên) năm 2021-2022 trường chuyên Hùng Vương Gia Lai
Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm học 2021-2022 của trường THPT chuyên Hùng Vương - Gia Lai.
Đề thi bao gồm các câu hỏi sau: Cho đa thức \( f(x) = ax^2 + bx + c \) (với \( a \neq 0 \)). Tìm a, b, c biết \( f(x) - 2020 \) chia hết cho \( x - 1 \), \( f(x) + 2021 \) chia hết cho \( x + 1 \), và \( f(x) \) nhận giá trị bằng 2 khi \( x = 0 \). Cho đường tròn (O) có đường kính AB cố định, I là một điểm thuộc đoạn OA (I khác O). Qua I, kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại hai điểm phân biệt M và N. Gọi C là điểm thuộc cung lớn MN, E là giao điểm của AC với MN. a) Chứng minh tứ giác EIBC nội tiếp một đường tròn. b) Chứng minh \( AE \cdot AC = AM^2 \) và \( AE \cdot AC - AI \cdot IB = AI^2 \). c) Gọi H, K, P lần lượt là hình chiếu của C lên đường thẳng BM, MN và BN. Xác định vị trí điểm C trên đường tròn (O) sao cho độ dài đoạn thẳng HK lớn nhất. Cho hai số thực x, y không âm thỏa mãn x + y = 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \( S = (5x^2 + 7y)(5y^2 + 7x) + 151xy \).