Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề tam giác

Tài liệu gồm 48 trang, tổng hợp lý thuyết SGK, phân dạng và hướng dẫn giải các dạng toán chuyên đề tam giác trong chương trình Hình học 7. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề tam giác: BÀI 8 . TỔNG BA GÓC CỦA MỘT TAM GIÁC. + Dạng 1. Tính số đo góc của một tam giác. + Dạng 2. Nhận biết một tam giác vuông, tìm các góc bằng nhau trong hình vẽ có tam giác vuông. + Dạng 3. Chứng minh hai đường thẳng song song bằng cách chứng minh hai góc bằng nhau. + Dạng 4. So sánh các góc dựa vào tính chất góc ngoài của tam giác. BÀI 9 . HAI TAM GIÁC BẰNG NHAU. + Dạng 1. Từ hai tam giác bằng nhau, xác định các cạnh bằng nhau, các góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Dạng 2. Viết kí hiệu về sự bằng nhau của hai tam giác. BÀI 10 . TRƯỜNG HỢP BẰNG NHAU THỨ NHẤT CỦA TAM GIÁC CẠNH – CẠNH – CẠNH (C.C.C). + Dạng 1. Vẽ tam giác biết độ dài ba cạnh. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh- cạnh- cạnh. Sắp xếp lại trình tự lời giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 3. Sử dụng trường hợp bằng nhau cạnh- cạnh- cạnh để chứng minh hai góc bằng nhau. BÀI 11 . TRƯỜNG HỢP BẰNG NHAU THỨ HAI CỦA TAM GIÁC CẠNH – GÓC – CẠNH (C.G.C). + Dạng 1. Vẽ tam giác biết hai cạnh và góc xen giữa. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. + Dạng 3. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp cạnh – góc – cạnh. Sắp xếp lại trình tự giải bài toán chứng minh hai tam giác bằng nhau. + Dạng 4. Sử dụng trường hợp bằng nhau cạnh – góc – cạnh để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 12 . TRƯỜNG HỢP BẰNG NHAU THỨ BA CỦA TAM GIÁC GÓC – CẠNH – GÓC (G.C.G). + Dạng 1. Vẽ tam giác biết một cạnh và hai góc kề. + Dạng 2. Tìm hoặc chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Dạng 3. Sử dụng trường hợp bằng nhau góc – cạnh – góc. + Dạng 4. Sử dụng nhiều trường hợp bằng nhau của tam giác. + Dạng 5. Tìm hoặc chứng minh hia tam giác vuông bằng nhau. + Dạng 6. Sử dụng trường hợp bằng nhau cạnh huyền – góc nhọn để chứng minh hai đoạn thẳng bằng nhau. [ads] BÀI 13 . TAM GIÁC CÂN. + Dạng 1. Vẽ tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 2. Bổ sung điều kiện để hai tam giác, hai tam giác vuông cân, hai tam giác đều bằng nhau. + Dạng 3. Nhận biết một tam giác là tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Sử dụng định nghĩa tam giác cân, vuông cân, đều để suy ra các đoạn thẳng bằng nhau. + Dạng 5. Sử dụng tính chất của các tam giác cân, vuông cân, đều để tính số đo góc hoặc chứng minh hai góc bằng nhau. + Dạng 6. Chứng minh một tam giác là tam giác cân, vuông cân, đều để suy ra hai đoạn thẳng bằng nhau, hai góc bằng nhau. BÀI 14 . ĐỊNH LÝ PY – TA – GO. + Dạng 1. Tính độ dài một cạnh của tam giác vuông. + Dạng 2. Sử dụng định lý py-ta-go đảo để nhận biết tam giác vuông. BÀI 15 . CÁC TRƯỜNG HỢP BẰNG NHAU CỦA TAM GIÁC VUÔNG. + Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Dạng 2. Bổ sung thêm điều kiện để hai tam giác vuông bằng nhau. + Dạng 3. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. ÔN TẬP CHƯƠNG 2. + Dạng 1. Chọn câu phát biểu đúng, cho một hệ quả, tìm định lí trực tiếp suy ra hệ quả đó. + Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh hai đoạn thằng bằng nhau, hai góc bằng nhau; từ đó nhận biết tia phân giác của góc, đường trung trực của đoạn thẳng, hai đường thẳng vuông góc. + Dạng 3. Nhận biết tam giác vuông, tam giác cân, tam giác vuông cân, tam giác đều. + Dạng 4. Tính độ dài cạnh của tam giác vuông.

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề biểu đồ hình quạt tròn Toán 7
Tài liệu gồm 88 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề biểu đồ hình quạt tròn trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. Biểu đồ hình quạt tròn có các yếu tố sau: + Đối tượng thống kê được biểu diễn bằng các hình quạt tròn. + Số liệu thống kê theo tiêu chí thống kê của mỗi đối tượng được ghi ở hình quạt tròn tương ứng. Số liệu thống kê được tính theo tỉ số phần trăm. + Tổng các tỉ số phần trăm ghi ở các hình quạt tròn là 100%. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Đọc, mô tả và biểu diễn thành thạo các dữ liệu vào biểu đồ hình quạt tròn. Mô tả và biểu diễn dữ liệu trên biểu đồ: + Đọc và mô tả thành thạo các dữ liệu ở dạng biểu đồ hình quạt tròn. + Lựa chọn và biểu diễn được dữ liệu vào biểu đồ thích hợp. Dạng 2 . Phân tích và xử lý dữ liệu. + Nhận ra được vấn đề hoặc quy luật đơn giản dựa trên phân tích các số liệu thu được ở biểu đồ hình quạt tròn. + Giải quyết những vấn đề đơn giản liên quan đến các số liệu thu được. + Nhận biết được mối liên hệ giữa thống kê với những kiến thức trong các môn học khác và trong thực tế. PHẦN III . BÀI TẬP TƯƠNG TỰ.
Chuyên đề tập hợp các số thực Toán 7
Tài liệu gồm 34 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tập hợp các số thực trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . TẬP HỢP SỐ THỰC – SO SÁNH CÁC SỐ HỮU TỈ. – Sử dụng kí hiệu của tập hợp số: + Bạn cần nhớ: quan hệ giữa các tập hợp số. + Tập hợp các số tự nhiên kí hiệu là N. + Tập hợp các số nguyên kí hiệu là Z. + Tập hợp các số hữu tỉ kí hiệu là Q. + Tập hợp các số vô tỉ kí hiệu là I. + Tập hợp các số thực kí hiệu là R. – So sánh các số thực: + Việc so sánh các số thực được làm tương tự như so sánh các số hữu tỉ viết dưới dạng số thập phân. + Đặc biệt, với a b là hai số thực dương thì: a b a b. Dạng 2 . GIÁ TRỊ TUYỆT ĐỐI CỦA MỘT SỐ THỰC. – Giá trị tuyệt đối của một số hữu tỉ x (kí hiệu là |x|) được xác định như sau: + |x| = x khi x >= 0. + |x| = -x khi x < 0. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề số vô tỉ, căn bậc hai số học Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề số vô tỉ, căn bậc hai số học trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính căn bậc hai. – Các phép toán trong tập hợp các số vô tỉ cũng có các tính chất tương tự các phép toán trong tập hợp các số hữu tỉ. – Để thực hiện phép tính có chứa căn bậc 2, ta có thể làm như sau: + Bước 1. Tính các giá trị căn bậc hai (có thể dùng định nghĩa hoặc máy tính). + Bước 2. Thực hiện đúng thứ tự phép tính. Dạng 2 . Tìm x. – Ta sử dụng các tính chất sau: + Nếu x a thì 2 x a (với a 0). + Nếu 2 x a (với a 0) thì x a hoặc x a và ngược lại. Dạng 3 . So sánh các căn bậc hai. – Sử dụng tính chất: + Với hai số dương bất kì a và b thì a b a b. + Nếu a m m b thì a b. + Nếu x y z t thì x z y t. Dạng 4 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa căn bậc hai. – Áp dụng tính chất cơ bản sau: x 0 với mọi x 0. Dấu “=” xảy ra khi x = 0. Dạng 5 . Tìm giá trị nguyên của x để biểu thức nhận giá trị nguyên. – Tìm điều kiện của x để biểu thức nhận giá trị nguyên, ta thường làm như sau: + Bước 1. Tách phần nguyên: Tách tử theo mẫu sao cho A có dạng tổng của một số nguyên và một phân số có tử số nguyên. + Bước 2. Tìm x: Vận dụng tính chất sau: m A n với m n 0. Để A nhận giá trị nguyên thì m n hay n m. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề làm quen với số thập phân vô hạn tuần hoàn Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề làm quen với số thập phân vô hạn tuần hoàn trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Nhận biết được phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn. – Viết phân số dưới dạng phân số tối giản với mẫu dương. – Phân tích mẫu số đó ra thừa số nguyên tố. – Nếu mẫu này không có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân hữu hạn. – Nếu mẫu này có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân vô hạn tuần hoàn. Dạng 2 : Nhận biết được số thập phân hữu hạn và số thập phân vô hạn tuần hoàn, xác định được chu kì của một số thập phân vô hạn tuần hoàn. Viết phân số dưới dạng số thập phân và ngược lại. – Căn cứ vào khái niệm để nhận biết số thập phân hữu hạn hay vô hạn tuần hoàn. – Xét các chữ số sau dấu phẩy để xác định chu kỳ nếu là số thập phân vô hạn tuần hoàn. – Viết phân số dưới dạng số thập phân (thực hiện phép chia lấy tử chia cho mẫu, có thể sử dụng máy tính cầm tay để hỗ trợ). – Viết số thập phân dưới dạng phân số: + Viết dưới dạng phân số thập phân rối rút gọn đến tối giản nếu là số thập phân hữu hạn. + Nếu số thập phân vô hạn tuần hoàn có chu kì bắt đầu ngay sau dấu phẩy thì ta lấy chu kì làm tử còn mẫu là một số gồm các chữ số 9 với số chữ số 9 bằng số chữ số của chu kì. + Nếu số thập phân vô hạn tuần hoàn có chu kì không bắt đầu ngay sau dấu phẩy thì ta lấy số gồm các chữ số trước chu kì và chu kì trừ đi số gồm các chữ số trước chu kì là tử, còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số trước chu kì. Dạng 3 : Làm tròn số thập phân. – Áp dụng quy ước làm tròn số và độ chính xác cho trước. PHẦN III . BÀI TẬP TỰ LUYỆN.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6