Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét

Nội dung Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét Bản PDF - Nội dung bài viết Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét Chuyên đề phương trình bậc hai và ứng dụng hệ thức Vi-ét Bài toán giải và biện luận nghiệm phương trình bậc hai cùng với ứng dụng của hệ thức Vi-ét là một trong những chủ đề quan trọng nhất trong chương trình Đại số lớp 9. Đây là một dạng toán mà học sinh thường gặp phải và cần phải nắm vững để giải quyết được các bài tập trong sách giáo khoa. Qua việc giải phương trình bậc hai, học sinh sẽ học được cách tìm ra các nghiệm của phương trình, từ đó có thể áp dụng để giải các bài toán thực tế. Hệ thức Vi-ét là công cụ quan trọng giúp chúng ta tính được các giá trị của x khi biết tổng và tích hai nghiệm của phương trình bậc hai. Vận dụng hệ thức Vi-ét vào việc giải phương trình giúp học sinh nắm rõ cách thức tính toán, giải quyết bài toán một cách cụ thể và hiệu quả. Ôn tập và ôn luyện kỹ năng này giúp học sinh cải thiện khả năng suy luận và giải bài toán Đại số một cách chính xác.

Nguồn: sytu.vn

Đăng nhập để đọc

Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn thức bậc hai và hằng đẳng thức $\sqrt {A^2} = \left| A \right|$ trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Căn thức bậc hai. a. Định nghĩa: Với A là một biểu thức đại số thì A được gọi là căn thức bậc hai của A và A gọi là biểu thức lấy căn hay là biểu thức dưới dấu căn. b. A có nghĩa (hay xác định) khi 1 A 0 A ⇒ có nghĩa khi A > 0. Ví dụ: 3x có nghĩa khi 30 0 x x. 2. Hằng đẳng thức. Ví dụ 1: 2 2 12 12 12. Ví dụ 2: Rút gọn biểu thức sau: 2 (2) x với x ≥ 2. B. Bài tập và các dạng toán. Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Rút gọn các biểu thức chứa biến. Dạng 4: giải phương trình. Dạng 5: Tìm GTLN, GTNN của biểu thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép chia và phép khai phương
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép chia và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với A B 0 0 thì A A B B. 2. Quy tắc khai phương một thương: Muốn khai phương A B (với A B 0 0), ta khai phương A khai phương B rồi lấy thương của hai kết quả. Ta có: 0 0 A A A B. 3. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số A ≥ 0 cho căn bậc hai của số B > 0, ta có thể chia A cho B rồi khai phương kết quả đó 0 0 A A A B. B. Bài tập và các dạng toán. Dạng 1 : Thực hiện phép tính. Cách giải: Áp dụng công thức khai phương một thương. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng quy tắc khai phương một thương. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép nhân và phép khai phương
Tài liệu gồm 19 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép nhân và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với hai số a b 0 ta có: ab a b. Chú ý: Định lí trên còn có thể mở rộng cho tích của nhiều số không âm. 2. Quy tắc khai phương một tích. Với A B 0 0 ta có: AB A B. Mở rộng: Với 1 2 0 0 … 0 AA n ta có: 1 2 1 2 A A n n. 3. Quy tắc nhân các căn bậc hai. Với hai biểu thức A B 0 0 ta có: A B AB. Chú ý: Với A ≥ 0, ta có: 2 2 A A AA. B. Bài tập và các dạng toán. Dạng 1 : Tính giá trị biểu thức. Cách giải: Áp dụng công thức khai phương một tích. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng công thức khai phương của một tích. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. Dạng 4 : Chứng minh đẳng thức. Cách giải: Áp dụng bất đẳng thức Côsi cho các số không âm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6