Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải các bài toán về hàm số lũy thừa, mũ và logarit trong đề thi THPT QG 2017 - Dương Trác Việt

Tài liệu gồm 16 trang cung cấp một số cách giải quyết những bài tập về hàm số lũy thừa, mũ và logarit trong đề thi THPT Quốc Gia 2017 môn Toán. Bài viết ưu tiên đề cập loạt kỹ thuật giải nhanh theo định hướng trắc nghiệm, các câu hỏi vận dụng cao sẽ được trình bày chi tiết theo lối tự luận truyền thống.

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu tự học hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 47 trang bao gồm lý thuyết, ví dụ mẫu và bài tập tự luyện chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit, giúp học sinh học tốt chương trình Giải tích 12 chương 2. Khái quát nội dung tài liệu tự học hàm số lũy thừa, hàm số mũ và hàm số logarit: PHẦN 1 . HÀM SỐ LŨY THỪA-HÀM SỐ MŨ-HÀM SỐ LOGARIT. A. LÝ THUYẾT 2.1 Lũy thừa – Hàm số lũy thừa. 2.1.1 Lũy thừa. 2.1.2 Hàm số lũy thừa: y = x^α. 2.2 Logarit. 2.2.1 Kiến thức cơ bản. 2.3 Hàm số mũ – Hàm số logarit. 2.3.1 Hàm số mũ: y = a^x (0 < a khác 1). 2.3.2 Hàm số logarit: y = logax (0 < a khác 1 và x > 0). 2.3.3 Bảng đạo hàm. B. BÀI TÂP TỰ LUẬN 2.4 Bài tập về lũy thừa. 2.4.1 Dạng 1: Tính giá trị biểu thức. 2.4.2 Dạng 2: Đơn giản biểu thức. 2.4.3 Dạng 3: Lũy thừa hữu tỉ. 2.4.4 Dạng 4: So sánh cặp số. 2.4.5 Dạng 5: Bài toán thực tế. 2.5 Bài tập về logarit. 2.5.1 Dạng 1: Tính giá trị biểu thức. 2.5.2 Dạng 2: Biến đổi logarit. 2.5.3 Dạng 3: Chứng minh đẳng thức logarit. 2.5.4 Dạng 4: So sánh cặp số. 2.5.5 Dạng 4: Bài toán thực tế. 2.6 Bài tập hàm số mũ-hàm số logarit. 2.6.1 Dạng 1: Tập xác định hàm số. 2.6.2 Dạng 2: Đạo hàm. 2.6.3 Dạng 3: Chứng minh hàm số đã cho thỏa hệ thức cho trước. 2.6.4 Dạng 4: Giải phương trình, bất phương trình. 2.6.5 Dạng 5: Giá trị lớn nhất, giá trị nhỏ nhất. [ads] PHẦN 2 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT. A. PHƯƠNG TRÌNH 2.7 Phương trình mũ. 2.7.1 Phương trình mũ cơ bản. 2.7.2 Một số phương pháp giải phương trình mũ. 2.7.2.1 Phương pháp đưa về cùng cơ số. 2.7.2.2 Phương pháp logarit hóa. 2.7.2.3 Phương pháp đặt ẩn phụ. 2.7.2.4 Sử dụng tính đơn điệu của hàm số. 2.7.2.5 Phương trình tích. 2.7.3 Bài toán liên quan tham số m. 2.8 Phương trình logarit. 2.8.1 Phương trình logarit cơ bản. 2.8.2 Một số phương pháp giải phương trình logarit. 2.8.2.1 Phương pháp đưa về cùng cơ số. 2.8.2.2 Phương pháp mũ hóa. 2.8.2.3 Phương pháp đặt ẩn phụ. 2.8.2.4 Sử dụng tính đơn diệu hàm số. 2.8.3 Bài toán liên quan tham số m. B. BẤT PHƯƠNG TRÌNH 2.9 Bất phương trình mũ và bất phương trình logarit. 2.9.1 Bất phương trình mũ. 2.9.2 Bất phương trình logarit. 2.10 Hệ phương trình mũ và logarit. 2.11 Các ví dụ. 2.12 Bài tập bất phương trình, hệ phương trình mũ và logarit. 2.12.1 Giải các bất phương trình. 2.12.2 Giải hệ phương trình.
Các dạng toán bất phương trình mũ và bất phương trình logarit thường gặp
Tài liệu gồm 50 trang được biên soạn bởi thầy Nguyễn Bảo Vương tuyển chọn 104 câu hỏi và bài toán trắc nghiệm chủ đề bất phương trình mũ và bất phương trình logarit thường gặp trong các đề thi Trung học Phổ thông Quốc gia môn Toán, các câu hỏi và bài tập đều có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán bất phương trình mũ và bất phương trình logarit thường gặp: PHẦN A . CÂU HỎI Dạng 1 . Bất phương trình logarit. Dạng 1.1 Bất phương trình cơ bản (Trang 1). Dạng 1.1.1 Không cần biến đổi (Trang 1). Dạng 1.1.2 Cần biến đổi (Trang 4). Dạng 1.2 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 6). Dạng 2 . Bất phương trình mũ. Dạng 2.1 Bất phương trình cơ bản (Trang 7). Dạng 2.1.1 Không cần biến đổi (Trang 7). Dạng 2.1.2 Cần biến đổi (Trang 10). Dạng 2.3 Giải và biện luận một số bất phương trình khó và khác (Trang 11). Dạng 2.3.1 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 11). Dạng 2.3.2 Giải bất phương trình khi biết đồ thị của f’(x) (Trang 11). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Bất phương trình logarit. Dạng 1.1 Bất phương trình cơ bản (Trang 14). Dạng 1.1.1 Không cần biến đổi (Trang 14). Dạng 1.1.2 Cần biến đổi (Trang 20). Dạng 1.2 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 24). Dạng 2 . Bất phương trình mũ. Dạng 2.1 Bất phương trình cơ bản (Trang 34). Dạng 2.1.1 Không cần biến đổi (Trang 34). Dạng 2.1.2 Cần biến đổi (Trang 39). Dạng 2.3 Giải và biện luận một số bất phương trình khó và khác (Trang 41). Dạng 2.3.1 Kết hợp nhiều phương pháp đặt ẩn phụ, cô lập m, đánh giá (Trang 41). Dạng 2.3.2 Giải bất phương trình khi biết đồ thị của f’(x) (Trang 46).
Các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG
Bài toán trắc nghiệm phương trình mũ và phương trình logarit là bài toán được bắt gặp nhiều trong các đề thi THPT Quốc gia môn Toán, với nhiều dạng bài và độ khó từ mức cơ bản đến nâng cao. Để giúp các em học sinh khối 12 có thêm tài liệu tự học chủ đề phương trình mũ và phương trình logarit (Giải tích 12 chương 2), xa hơn là ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, thầy Nguyễn Bảo Vương đã tổng hợp các câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo – đề minh họa – đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu gồm 99 trang bao gồm 180 câu hỏi và bài tập trắc nghiệm phương trình mũ và phương trình logarit có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán phương trình mũ và phương trình logarit thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 . Phương trình logarit (Trang 2). + Dạng 1.1 Phương trình logarit cơ bản (Trang 2). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 4). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số (Trang 6). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 6). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 7). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 7). + Dạng 1.4.1 Phương trình logarit không chứa tham số (Trang 7). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 8). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 9). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 10). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 10). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 10). Dạng 2 . Phương trình mũ (Trang 11). + Dạng 2.1 Phương trình mũ cơ bản (Trang 11). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 13). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 13). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 15). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 17). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 18). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 19). + Dạng 2.5 Phương pháp hàm số (Trang 19). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 19). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 19). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 20). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 21). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 . Phương trình logarit (Trang 21). + Dạng 1.1 Phương trình logarit cơ bản (Trang 21). + Dạng 1.2 Biến đổi đưa về phương trình logarit cơ bản (Trang 27). + Dạng 1.3 Giải và biện luận phương trình logarit bằng phương pháp đưa về cùng cơ số  (Trang 32). + Dạng 1.3.1 Phương trình logarit không chứa tham số (Trang 32). + Dạng 1.3.2 Phương trình logarit chứa tham số (Trang 35). + Dạng 1.4 Giải và biện luận phương trình logarit bằng phương pháp đặt ẩn phụ (Trang 41). + Dạng 1.4.1 Phương trình logarit không chứa tham số  (Trang 41). + Dạng 1.4.2 Phương trình logarit chứa tham số và dùng định lý Vi-et để biện luận (Trang 43). + Dạng 1.4.3 Phương trình logarit chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 46). + Dạng 1.5 Giải và biện luận phương trình logarit chứa tham số bằng phương pháp cô lập tham số (Trang 50). + Dạng 1.6 Giải và biện luận phương trình logarit bằng phương pháp hàm số (Trang 52). + Dạng 1.7 Giải và biện luận phương trình logarit bằng phương pháp khác (Trang 53). Dạng 2 . Phương trình mũ (Trang 57). + Dạng 2.1 Phương trình mũ cơ bản (Trang 57). + Dạng 2.2 Giải và biện luận phương trình mũ bằng phương pháp đặt ẩn phụ (Trang 62). + Dạng 2.2.1 Phương trình mũ không chứa tham số (Trang 62). + Dạng 2.2.2 Phương trình mũ chứa tham số và dùng định lý Vi-et để biện luận (Trang 69). + Dạng 2.2.3 Phương trình mũ chứa tham số và dùng phương pháp cô lập m để biện luận (Trang 79). + Dạng 2.3 Giải và biện luận phương trình mũ bằng phương pháp logarit hóa (Trang 84). + Dạng 2.4 Giải và biện luận phương trình mũ bằng một số phương pháp khác (Trang 85). + Dạng 2.5 Phương pháp hàm số (Trang 87). Dạng 3 . Phương trình kết hợp của mũ và logarit (Trang 88). + Dạng 3.1 Giải và biện luận bằng phương pháp đặt ẩn phụ (Trang 88). + Dạng 3.2 Giải và biện luận bằng phương pháp cô lập m (Trang 91). + Dạng 3.3 Giải và biện luận bằng phương pháp hàm số (Trang 95).
Trắc nghiệm hàm số mũ, hàm số logarit và một số bài toán liên quan
Nhằm giúp các em học sinh khối 12 tự học chương trình Giải tích 12 chương 2: hàm số lũy thừa, hàm số mũ và hàm số logarit và ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu đến các em tài liệu trắc nghiệm hàm số mũ, hàm số logarit và một số bài toán liên quan do thầy Nguyễn Bảo Vương biên soạn. Tài liệu gồm 65 trang với tổng cộng 171 bài toán trắc nghiệm hàm số mũ, hàm số logarit cùng các bài toán liên quan có đáp án và lời giải chi tiết. Các bài toán được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán, đề minh họa, đề tham khảo, đề chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. [ads] Mục lục tài liệu trắc nghiệm hàm số mũ, hàm số logarit và một số bài toán liên quan: PHẦN A . CÂU HỎI Dạng 1. Tìm tập xác định hàm số mũ, hàm số logarit (Trang 1). Dạng 1.1 Bài toán không chứa tham số (Trang 1). Dạng 1.2 Bài toán có chứa tham số (Trang 2). Dạng 2. Tìm đạo hàm hàm số mũ, hàm số logarit (Trang 4). Dạng 3. Khảo sát hàm số mũ, hàm số logarit (Trang 7). Dạng 4. Bài toán thực tế (lãi suất, tăng trưởng…) (Trang 16). Dạng 5. Bài toán cực trị (Trang 21). Dạng 6. Một số bài toán khác (Trang 24). PHẦN B . ĐÁP ÁN THAM KHẢO  Dạng 1. Tìm tập xác định hàm số mũ, hàm số logarit (Trang 25). Dạng 1.1 Bài toán không chứa tham số (Trang 25). Dạng 1.2 Bài toán có chứa tham số (Trang 26). Dạng 2. Tìm đạo hàm hàm số mũ, hàm số logarit (Trang 29). Dạng 3. Khảo sát hàm số mũ, hàm số logarit (Trang 32). Dạng 4. Bài toán thực tế (lãi suất, tăng trưởng…) (Trang 41). Dạng 5. Bài toán cực trị (Trang 53). Dạng 6. Một số bài toán khác (Trang 63).

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6