Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Quảng Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Quảng Bình Bản PDF -
Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Quảng Bình Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Quảng Bình
Xin chào các thầy cô và các em học sinh! Hôm nay Sytu xin giới thiệu đến quý vị đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021-2022 của sở GD&ĐT Quảng Bình. Đề thi bao gồm đầy đủ đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm do sở GD&ĐT Quảng Bình công bố. Kỳ thi sẽ diễn ra vào ngày 08 tháng 06 năm 2021.
Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh: Tìm tất cả các số nguyên dương n sao cho hai số $2^{n^2 + 7}$ và $2^{n^2 + 12}$ đều là lập phương của hai số nguyên dương nào đó. Cho tam giác nhọn ABC nội tiếp đường tròn O đường kính AE. Gọi D là một điểm bất kì trên cung BE không chứa điểm A (D khác B và E). Gọi H, I, K lần lượt là hình chiếu vuông góc của D lên các đường thẳng BC, CA và AB. a) Chứng minh ba điểm H, I, K thẳng hàng. b) Chứng minh AC, AB, BC, DI, DK, DH. c) Gọi P là trực tâm của ABC, chứng minh đường thẳng HK đi qua trung điểm của đoạn thẳng DP. Trong mặt phẳng tọa độ Oxy, cho parabol $y = x^2$ và đường thẳng d: $y = mx + m^2 - 1$ (với m là tham số). Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ $x = \frac{1}{2}$ thỏa điều kiện $2x^2 + x - 3$.
File WORD có sẵn để quý thầy cô tải về và sử dụng. Chúc quý vị và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!