Nội dung Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh Đề thi học sinh giỏi cấp trường lớp 10 môn Toán năm 2020 2021 trường chuyên Bắc Ninh Đề thi học sinh giỏi cấp trường Toán lớp 10 năm học 2020 – 2021 trường THPT chuyên Bắc Ninh được thiết kế gồm 01 trang bài toán dạng tự luận, đòi hỏi học sinh phải suy nghĩ sáng tạo và có kiến thức chắc chắn. Thời gian làm bài của học sinh là 180 phút, đủ để giải quyết vấn đề phức tạp. Trích dẫn câu hỏi trong đề thi: + Bài 1: Cho các số nguyên dương được viết vào 441 ô của bảng vuông 21×21. Mỗi hàng và mỗi cột có nhiều nhất 6 giá trị khác nhau. Bạn hãy chứng minh rằng tồn tại một số nguyên có mặt ở ít nhất 3 cột và ít nhất 3 hàng. + Bài 2: Tam giác ABC có tâm đường tròn ngoại tiếp là O, tâm đường tròn nội tiếp tam giác là I. Hãy chứng minh rằng AIOd ≤ 90◦ khi và chỉ khi AB + AC ≥ 2BC. + Bài 3: Cho a, b, c là các số thực dương thỏa mãn ab + bc + ca = 3abc. Bạn hãy tìm giá trị nhỏ nhất của biểu thức P. Đề thi này không chỉ đòi hỏi sự hiểu biết sâu rộng của học sinh về các kiến thức toán học mà còn thách thức họ trong việc suy luận logic và giải quyết vấn đề. Chắc chắn rằng các thí sinh sẽ phải mất rất nhiều công sức để có thể hoàn thành tốt bài thi này.
Nguồn: sytu.vn