Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tam giác cân, đường trung trực của đoạn thẳng lớp 7 môn Toán

Nội dung Chuyên đề tam giác cân, đường trung trực của đoạn thẳng lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong Toán lớp 7Phần I: Tóm tắt lí thuyếtPhần II: Các dạng bàiPhần III: Bài tập tự luyện Chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong Toán lớp 7 Chuyên đề này bao gồm 26 trang tài liệu, được chia thành 3 phần chính để giúp học sinh hiểu rõ về tam giác cân và đường trung trực của đoạn thẳng. Phần I: Tóm tắt lí thuyết Phần này tóm tắt những kiến thức cơ bản về tam giác cân, tam giác đều và tính chất của đường trung trực. Học sinh sẽ được hướng dẫn cách nhận biết tam giác cân, tam giác đều, tính chất của chúng và cách áp dụng vào việc giải bài tập. Phần II: Các dạng bài Phần này giới thiệu các dạng bài tập phổ biến trong chương trình Toán lớp 7 liên quan đến tam giác cân và đường trung trực. Học sinh sẽ được hướng dẫn cách chứng minh tam giác cân, sử dụng tính chất của tam giác cân để giải quyết bài toán, và vận dụng tính chất của đường trung trực. Phần III: Bài tập tự luyện Phần này chứa các bài tập tự luyện để học sinh ôn tập và củng cố kiến thức về tam giác cân và đường trung trực. Học sinh sẽ được thực hành cách chứng minh một điểm thuộc đường trung trực và cách chứng minh một đường thẳng là đường trung trực của một đoạn thẳng.

Nguồn: sytu.vn

Đăng nhập để đọc

Chuyên đề đa thức một biến lớp 7 môn Toán
Nội dung Chuyên đề đa thức một biến lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đa thức một biến lớp 7 môn Toán Chuyên đề đa thức một biến lớp 7 môn Toán Để hiểu rõ về đa thức một biến trong môn Toán lớp 7, chúng ta cần nắm vững một số kiến thức cơ bản sau đây. Đa thức một biến là tổng của những đơn thức của cùng một biến, mỗi đơn thức trong tổng là một hạng tử của đa thức. Không chỉ các đơn thức, số 0 cũng được xem là một đa thức không. Khi biểu diễn đa thức, chúng ta thường sử dụng chữ cái in hoa làm kí hiệu. Để thu gọn và sắp xếp đa thức một biến, chúng ta cần phải tính toán phép cộng các đơn thức cùng bậc và sắp xếp các hạng tử theo lũy thừa giảm của biến. Bậc của đa thức là bậc của hạng tử có bậc cao nhất, hệ số cao nhất là hệ số của hạng tử có bậc cao nhất và hệ số tự do là hệ số của hạng tử có bậc 0. Để tính giá trị của đa thức, chúng ta cần thực hiện các bước sau: thu gọn, sắp xếp đa thức theo lũy thừa giảm dần của biến, thay giá trị cụ thể của biến vào đa thức và thực hiện phép tính, sau đó kết luận. Nếu muốn tìm nghiệm của đa thức, ta có thể thực hiện phương pháp so sánh giá trị đa thức với 0 để tìm ra các nghiệm của đa thức đó. Những kiến thức và kỹ năng này sẽ giúp bạn hiểu rõ hơn về chuyên đề đa thức một biến trong môn Toán lớp 7. Hãy ôn tập và thực hành các bài tập để nắm vững kiến thức và rèn luyện kỹ năng tính toán của mình.
Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán
Nội dung Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán Chuyên đề đại lượng tỉ lệ nghịch lớp 7 môn Toán Bộ tài liệu này bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán lớp 7. Phần 1: Tóm tắt lí thuyết Trong phần này, chúng ta sẽ tìm hiểu về các công thức và tính chất liên quan đến tỉ lệ nghịch giữa các đại lượng. Các khái niệm cơ bản như hệ số tỉ lệ, biểu diễn mối quan hệ tỉ lệ, và cách xác định các đại lượng chưa biết sẽ được giải thích chi tiết. Phần 2: Các dạng bài tập Trong phần này, chúng ta sẽ làm quen với các dạng bài tập phổ biến liên quan đến tỉ lệ nghịch. Các bài tập bao gồm việc áp dụng các công thức, xác định quan hệ tỉ lệ nghịch giữa các đại lượng, tìm các đại lượng chưa biết, và kiểm tra tính tỉ lệ nghịch giữa chúng. Cụ thể, bạn sẽ gặp các dạng sau: Dạng 1: Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 2: Bài toán về hai đại lượng tỉ lệ nghịch, bài toán tìm hai số biết chúng tỉ lệ nghịch với các số đã biết, và bài toán về nhiều đại lượng tỉ lệ nghịch. Phần 3: Bài tập tự luyện Trong phần này, bạn sẽ có cơ hội tự rèn luyện kỹ năng giải các bài tập liên quan đến đại lượng tỉ lệ nghịch. Các bài tập ở mức độ từ cơ bản đến nâng cao sẽ giúp bạn củng cố kiến thức và làm quen với việc áp dụng chúng vào thực tế. Với bộ tài liệu này, hy vọng rằng bạn sẽ nắm vững kiến thức về đại lượng tỉ lệ nghịch và có thể áp dụng chúng linh hoạt vào việc giải các bài tập liên quan. Chúc bạn học tốt!
Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn Toán
Nội dung Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề đại lượng tỉ lệ thuận lớp 7 môn Toán Tài liệu này bao gồm 23 trang, giúp học sinh nắm vững lí thuyết và cách giải các dạng bài tập chuyên đề về đại lượng tỉ lệ thuận trong chương trình Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT 1. Định nghĩa: Khi hai đại lượng y và x có mối liên hệ theo công thức y = kx với k khác 0, thì y tỉ lệ thuận với x theo hệ số tỉ lệ k. 2. Tính chất: Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k, thì nếu y1/y2 = k thì x1/x2 = k. 3. Bổ sung: - Nếu y tỉ lệ thuận với x theo hệ số k khác 0, thì x tỉ lệ thuận với y với hệ số 1/k. - Nếu z tỉ lệ thuận với y theo hệ số 1/k và y tỉ lệ thuận với x theo hệ số 2/k, thì z tỉ lệ thuận với x theo hệ số 2/k. PHẦN II. CÁC DẠNG BÀI 1. Dạng 1: Xác định hai đại lượng tỉ lệ thuận, hệ số tỉ lệ và các giá trị tương ứng của chúng. - Áp dụng định nghĩa: y tỉ lệ thuận với x khi y = kx (k khác 0). - Hệ số tỉ lệ: y = kx. 2. Dạng 2: Áp dụng vào bài toán thực tế liên quan đến đại lượng tỉ lệ thuận. - Để giải bài toán về tỉ lệ thuận, cần xác định mối quan hệ tỉ lệ giữa hai đại lượng, sau đó áp dụng tính chất về tỉ số giữa các giá trị của hai đại lượng tỉ lệ thuận: x1/x2 = y1/y2. Và áp dụng tính chất của tỉ lệ thức: (a/c) / (b/d) = ad / bc. PHẦN III. BÀI TẬP TỰ LUYỆN Tài liệu cũng cung cấp bài tập tự luyện để học sinh ôn tập và nâng cao kiến thức về chuyên đề đại lượng tỉ lệ thuận trong môn Toán lớp 7.
Chuyên đề tỉ lệ thức lớp 7 môn Toán
Nội dung Chuyên đề tỉ lệ thức lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tỉ lệ thức lớp 7 môn ToánPhần I: Tóm tắt lí thuyếtPhần II: Các dạng bàiPhần III: Bài tập tự luyện Chuyên đề tỉ lệ thức lớp 7 môn Toán Tài liệu này bao gồm tổng cộng 38 trang, được chia thành ba phần chính bao gồm tóm tắt lí thuyết, hướng dẫn giải các dạng bài và bài tập tự luyện về chuyên đề tỉ lệ thức trong chương trình môn Toán lớp 7. Phần I: Tóm tắt lí thuyết Phần này sẽ giúp học sinh hiểu rõ về cách lập tỉ lệ thức, từ định nghĩa đến cách áp dụng tính chất của tỉ lệ thức để giải các bài tập. Phần II: Các dạng bài Phần này cung cấp cách lập tỉ lệ thức từ các số đã cho, tìm số chưa biết của một tỉ lệ thức, các bài tập ứng dụng và cách chứng minh đẳng thức trong tỉ lệ thức. Đây là phần quan trọng giúp học sinh hiểu rõ hơn về chuyên đề này. Phần III: Bài tập tự luyện Phần này bao gồm các bài tập giúp học sinh ôn tập và tự kiểm tra kiến thức của mình về tỉ lệ thức. Qua việc giải các bài tập này, học sinh sẽ củng cố và nắm vững kiến thức về chuyên đề này. Để thành công trong việc học chuyên đề tỉ lệ thức, học sinh cần tiếp cận và đầu tư thời gian vào việc ôn tập và giải các dạng bài tập khác nhau. Hãy cố gắng và không ngừng nỗ lực, sẽ đạt được kết quả tốt trong môn Toán lớp 7.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6