Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG cấp huyện Toán 12 năm 2020 - 2021 sở GDĐT Cao Bằng

Đề thi chọn HSG cấp huyện Toán 12 năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi chọn HSG cấp huyện Toán 12 năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Đội văn nghệ của một lớp có 5 bạn nam và 7 bạn nữ. Chọn ngẫu nhiên 5 bạn tham gia biểu diễn. Tính xác suất để trong 5 bạn được chọn có cả nam và nữ, đồng thời số nam nhiều hơn số nữ. + Một hợp đồng dài hạn thực hiện trong thời gian 10 năm được một công ty A đề xuất hai phương án chi trả lương cho người lao động như sau: Phương án 1: người lao động sẽ nhận được 48 triệu đồng cho năm làm việc đầu tiên và kể từ năm thứ hai mức lương sẽ được tăng thêm 3 triệu đồng mỗi năm. Phương án 2: người lao động sẽ nhận 7 triệu đồng cho quý đầu tiên và kể từ quý thứ hai mức lương sẽ tăng thêm 5 trăm nghìn đồng mỗi quý (biết rằng 1 quý là 3 tháng). Hỏi phương án chi trả lương nào của công ty sẽ có lợi hơn cho người lao động? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB cân tại S và mặt phẳng (SAB) vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45°. Gọi M là trung điểm của SD. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính khoảng cách từ điểm M đến mặt phẳng (SAC) theo a.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 - 2021 trường chuyên Hùng Vương - Bình Dương
Ngày … tháng 09 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Bình Dương tổ chức kỳ thi thử cho đội tuyển học sinh giỏi môn Toán vòng 1 lần 2 năm học 2020 – 2021. Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề), thí sinh không được sử dụng tài liệu và máy tính khi làm bài. Trích dẫn đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn (MNP) lần lượt cắt các đường tròn (MCA), (MAB) tại điểm thứ hai là E, F. Giả sử ME, MF theo thứ tự cắt AC, AB tại K, L. a) Chứng minh rằng OH vuông góc với KL tại điểm S. b) Gọi G là trọng tâm của tam giác ABC. Các điểm Y, Z lần lượt là hình chiếu của B, C lên AC, AB. Gọi X là giao điểm của KZ và LY. Chứng minh rằng A, G, S, X cùng nằm trên một đường tròn. + Tìm tất cả các đa thức P(x) với hệ số thực sao cho P(a)^2 + P(b)^2 + P(c)^2 với mọi bộ số (a;b;c) thỏa mãn ab + bc + ca + 1 = 0. + Tìm tất cả các bộ ba số tự nhiên (m;n;k) thỏa mãn 5^m + 7^n = k^3.
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.
Đề thi HSG Toán 12 (vòng 1) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Tư ngày 09 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 1. Đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 1) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tứ giác lồi ABCD nội tiếp đường tròn (C). Gọi M, N, P lần lượt là giao điểm của các cặp đường thẳng AB và CD, AD và BC, AC và BD. Gọi I1, I2, I3, I4 lần lượt là tâm đường tròn bàng tiếp các tam giác ABN, BCM, CDN và ADM tương ứng với các đỉnh A, C, D và D. a) Chứng minh các điểm I1, I2, I3, I4 đồng viên. b) Gọi I là tâm đường tròn qua I1, I2, I3, I4. Chứng minh PI vuông góc với MN. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x + f(y)) – f(f(x) – x) = f(y) – f(x) + 2x + 2y với mọi x, y thuộc R. + Chứng minh rằng với mọi n thuộc Z+, luôn tồn tại m thuộc N sao cho: (√2 – 1)^n = √(m + 1) – √m.
Đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 - 2020 sở GDĐT Hậu Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang; kỳ thi được diễn ra vào ngày 02 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán THPT cấp tỉnh năm 2019 – 2020 sở GD&ĐT Hậu Giang : + Trong đợt ứng phó đại dịch COVID – 19 vừa qua, ngành y tế của một tỉnh miền Tây đã chọn ngẫu nhiên một tổ gồm 3 nhân viên trong 6 nhân viên y tế dự phòng của tỉnh và 16 nhân viên y tế của các trung tâm y tế dự phòng cơ sở để thực hiện hành động chống dịch đột xuất. Tính xác suất để 3 nhân viên y tế được chọn có cả nhân viên y tế của tỉnh và nhân viên y tế của cơ sở. + Cho hình chóp S ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA a 2 góc giữa đường thẳng SC và mặt phẳng đáy bằng 0 45. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB. + Trong mặt phẳng với hệ tọa độ Oxy, cho tứ giác ABCD nội tiếp trong đường tròn đường kính BD. Gọi H K lần lượt là hình chiếu vuông góc của điểm A trên các đường thẳng BC BD và E là giao điểm của hai đường thẳng HK và AC. Biết đường thẳng AC đi qua điểm M (3;2) và nhận n (1;-1) làm vectơ pháp tuyến. Tìm tọa độ các điểm E và A, biết điểm H (1;3), K(2;2) và hoành độ điểm A lớn hơn 2.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6