Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học hàm số lượng giác và phương trình lượng giác

Tài liệu gồm 110 trang phân dạng và tuyển chọn 119 câu hỏi và bài toán trắc nghiệm hàm số lượng giác và phương trình lượng giác, có đáp án và lời giải chi tiết, giúp học sinh tự học chương trình Đại số và Giải tích 11 chương 1. Mục lục tài liệu tự học hàm số lượng giác và phương trình lượng giác: PHẦN 1 : ĐỀ BÀI Dạng 1. Xác định đồ thị hàm số lượng giác. Dạng 2. Xác định chu kỳ hàm số lượng giác. Dạng 3. Tính đồng biến, nghịch biến của hàm số lượng giác. Dạng 4. Xác định số điểm biểu diễn của phương trình lượng giác cho trước trên đường tròn lượng giác. Dạng 5. Biện luận nghiệm phương trình lượng giác không chứa tham số. + Dạng 5.1. Tìm số nghiệm của phương trình lượng giác trên tập K. + Dạng 5.2. Tìm nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình lượng giác. + Dạng 5.3. Tính tổng tất cả các nghiệm của phương trình lượng giác trên tập K. Dạng 6. Tìm điều kiện của tham số m để phương trình lượng giác cho trước có nghiệm. Dạng 7. Tìm giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. + Dạng 7.1. Tìm giá trị lớn nhất, giá trị nhỏ nhất sử dụng điều kiện -1 ≤ sinx ≤ 1, -1 ≤ cosx ≤ 1. + Dạng 7.2. Tìm giá trị lớn nhất, giá trị nhỏ nhất dạng y = asinx + bcosx + c. + Dạng 7.3. Tìm giá trị lớn nhất, giá trị nhỏ nhất sử dụng bất đẳng thức cổ điển. [ads] PHẦN 2 : BẢNG ĐÁP ÁN PHẦN 3 : ĐÁP ÁN CHI TIẾT Dạng 1. Xác định đồ thị hàm số lượng giác. Dạng 2. Xác định chu kỳ hàm số lượng giác. Dạng 3. Tính đồng biến, nghịch biến của hàm số lượng giác. Dạng 4: xác định số điểm biểu diễn của phương trình lượng giác cho trước trên đường tròn lượng giác. Dạng 5. Biện luận nghiệm phương trình lượng giác không chứa tham số. + Dạng 5.1. Tìm số nghiệm của phương trình lượng giác trên tập K. + Dạng 5.2. Tìm nghiệm dương nhỏ nhất và nghiệm âm lớn nhất của phương trình lượng giác. + Dạng 5.3. Tính tổng tất cả các nghiệm của phương trình lượng giác trên tập K. Dạng 6. Tìm điều kiện của tham số m để phương trình lượng giác cho trước có nghiệm. Dạng 7. Tìm giá trị lớn nhất, nhỏ nhất của hàm số lượng giác. + Dạng 7.1. Tìm giá trị lớn nhất, giá trị nhỏ nhất sử dụng điều kiện -1 ≤ sinx ≤ 1, -1 ≤ cosx ≤ 1. + Dạng 7.2. Tìm giá trị lớn nhất, giá trị nhỏ nhất dạng y = asinx + bcosx + c. + Dạng 7.3. Tìm giá trị lớn nhất, giá trị nhỏ nhất sử dụng bất đẳng thức cổ điển.

Nguồn: toanmath.com

Đăng nhập để đọc

Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Hoàng Việt
Tài liệu gồm 86 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm (có đáp án) chuyên đề hàm số lượng giác và phương trình lượng giác (Toán 11 phần Đại số và Giải tích chương 1). Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §1 – HÀM SỐ LƯỢNG GIÁC 1. A KIẾN THỨC CẦN NHỚ 1. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 2. + Dạng 1. Tìm tập xác định của hàm số lượng giác 2. + Dạng 2. Tính chẵn lẻ của hàm số 6. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 7. C BÀI TẬP TRẮC NGHIỆM 12. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 19. A KIẾN THỨC CẦN NHỚ 19. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 21. + Dạng 1. Giải các phương trình lượng giác cơ bản 21. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 23. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 25. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a; b) cho trước 27. C BÀI TẬP TRẮC NGHIỆM 29. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 37. A KIẾN THỨC CẦN NHỚ 37. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 38. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 38. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 41. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 45. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 48. + Dạng 5. Phương trình chứa sin x ± cos x và sin x · cos x 50. C BÀI TẬP TRẮC NGHIỆM 51. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 59. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 59. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 59. + Dạng 2. Biến đổi asinx + bcosx 62. + Dạng 3. Biến đổi đưa về phương trình tích 64. + Dạng 4. Một số bài toán biện luận theo tham số 67. B BÀI TẬP TỰ LUYỆN 70. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 73. A Đề số 1 73. B Đề số 2 79. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 83.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Phạm Hùng Hải
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, tổng hợp kiến thức cần nhớ, phân loại, phương pháp giải toán và bài tập trắc nghiệm + tự luận chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Toán 11 phần Đại số và Giải tích chương 1. Chương 1 . HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC 1. §0 – Công thức lượng giác cần nhớ 1. §1 – HÀM SỐ LƯỢNG GIÁC 3. A KIẾN THỨC CẦN NHỚ 3. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 4. + Dạng 1. Tìm tập xác định của hàm số lượng giác 4. + Dạng 2. Tính chẵn lẻ của hàm số 7. + Dạng 3. Tìm giá trị lớn nhất – giá trị nhỏ nhất 8. C BÀI TẬP TRẮC NGHIỆM 13. §2 – PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 17. A KIẾN THỨC CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 19. + Dạng 1. Giải các phương trình lượng giác cơ bản 19. + Dạng 2. Giải các phương trình lượng giác dạng mở rộng 21. + Dạng 3. Giải các phương trình lượng giác có điều kiện xác định 22. + Dạng 4. Giải các phương trình lượng giác trên khoảng (a;b) cho trước 24. C BÀI TẬP TRẮC NGHIỆM 26. §3 – MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP 29. A KIẾN THỨC CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 30. + Dạng 1. Giải phương trình bậc nhất đối với một hàm số lượng giác 30. + Dạng 2. Giải phương trình bậc hai đối với một hàm số lượng giác 33. + Dạng 3. Giải phương trình bậc nhất đối với sinx và cosx 37. + Dạng 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx 41. + Dạng 5. Phương trình chứa sinx ± cosx và sinx · cosx 43. C BÀI TẬP TRẮC NGHIỆM 45. §4 – MỘT SỐ PHƯƠNG PHÁP GIẢI PT LƯỢNG GIÁC 48. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 48. + Dạng 1. Biến đổi đưa phương trình về dạng phương trình bậc hai (ba) đối với một hàm số lượng giác 48. + Dạng 2. Biến đổi asinx + bcosx 49. + Dạng 3. Biến đổi đưa về phương trình tích 50. + Dạng 4. Một số bài toán biện luận theo tham số 51. B BÀI TẬP TỰ LUYỆN 55. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 57. A Đề số 1 57. B Đề số 2 60. §6 – ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 63.
Vẻ đẹp lời giải hình học qua các bài toán lượng giác
Tài liệu gồm 09 trang, được biên soạn bởi Ths. Hoàng Minh Quân (giáo viên Toán trường THPT chuyên Nguyễn Huệ, Hà Nội), trình bày vẻ đẹp lời giải hình học qua các bài toán lượng giác. Trong chương trình toán THPT, để chứng minh một số hệ thức lượng giác, ta thường sử dụng các biến đổi lượng giác. Câu hỏi đặt ra, ngoài các cách biến đổi lượng giác thì ta có cách tiếp cận nào khác để giải quyết vấn đề không? Để trả lời câu hỏi này, bài viết sau đây mời bạn đọc cùng đến với hướng tiếp cận hình học cho chứng minh một số hệ thức lượng giác. I. CÁC ĐẲNG THỨC LƯỢNG GIÁC. II. BẤT ĐẲNG THỨC LƯỢNG GIÁC. III. BÀI TẬP TỰ LUYỆN.
Hàm số lượng giác và phương trình lượng giác - Lê Minh Tâm
Tài liệu gồm 124 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, phân loại và hướng dẫn giải các dạng bài tập chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. I. Ôn tập. 1.1. Các hệ thức cơ bản. 1.2. Cung liên kết. 1.3. Công thức cộng. 1.4. Công thức nhân và hạ bậc. 1.5. Công thức biến đổi tổng thành tích. 1.6. Công thức biến đổi tích thành tổng. 1.7. Bảng giá trị lượng giác của một số góc đặc biệt. II. Hàm số y = sinx và hàm số y = cosx. III. Hàm số y = tanx và hàm số y = cotx. IV. Bài tập. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Tính chẵn lẻ của hàm số lượng giác. Dạng 03. Chu kỳ hàm số lượng giác. Dạng 04. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. I. Phương trình sinx = a và phương trình cosx = a. II. Phương trình tanx = a và phương trình cotx = a. III. Bài tập. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI THEO HÀM LƯỢNG GIÁC. I. Dạng cơ bản. II. Bài tập. BÀI 4 . PHƯƠNG TRÌNH BẬC NHẤT VỚI HÀM SIN – COS. I. Dạng cơ bản. II. Bài tập. BÀI 5 . PHƯƠNG TRÌNH ĐẲNG CẤP. I. Dạng cơ bản. II. Bài tập. BÀI 6 . PHƯƠNG TRÌNH ĐỐI XỨNG. I. Dạng cơ bản. II. Bài tập. BÀI 7 . CÁC LOẠI PHƯƠNG TRÌNH KHÁC. I. Biến đổi tích thành tổng. 1.1. Ví dụ minh họa. 1.2. Bài tập rèn luyện. II. Biến đổi tổng thành tích. 2.1. Ví dụ minh họa. 2.2. Bài tập rèn luyện. III. Tổng hợp các phương pháp. 3.1. Ví dụ minh họa. 3.2. Bài tập rèn luyện. IV. Phương trình lượng giác có điều kiện. 4.1. Ví dụ minh họa. 4.2. Bài tập rèn luyện. BÀI 8 . TỔNG ÔN ĐẠI SỐ VÀ GIẢI TÍCH 11 CHƯƠNG I. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác. Dạng 03. Phương trình lượng giác. Dạng 04. Tổng hợp phương trình lượng giác.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6