Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Đống Đa - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 17 tháng 04 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ A đến B dài 90km. Khi về ô tô đi theo đường khác dài hơn 10km và mỗi giờ ô tô đi được nhiều hơn lúc đi 10km nên thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc lúc đi và lúc về? + Một lon nước ngọt hình trụ có đường kính đáy là 6cm, độ dài trục là 11cm. Tính thể tích lon nước ngọt (cho pi = 3,14). + Cho đường tròn tâm O, đường kính AB và d là một tiếp tuyến của đường tròn (O) tại điểm A. Trên đường thẳng d lấy điểm M (khác A) và trên đoạn OB lấy điểm N (khác O và B). Đường thẳng MN cắt đường tròn (O) tại hai điểm C và D (C nằm giữa M và D). Gọi H là trung điểm của đoạn thẳng CD. 1) Chứng minh 4 điểm A, O, H, M cùng nằm trên một đường tròn. 2) Chứng minh MA2 = MC.MD. 3) Đường thẳng qua D song song với MO cắt AB và BC lần lượt tại K và F. Chứng minh tứ giác AHKD nội tiếp và K là trung điểm của đoạn thẳng DF.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề KSCL Toán 9 năm 2020 - 2021 trường THCS Nguyễn Tri Phương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm học 2020 – 2021 trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Do dịch CoVid-19 bùng phát trở lại nên theo kế hoạch hai tổ sản xuất dự định làm 1000 hộp khẩu trang để cung cấp cho tâm dịch Bắc Giang. Nhưng khi thực hiện tổ một làm vượt mức kế hoạch 15%, tổ hai làm vượt mức kế hoạch 20% nên cả hai tổ làm được 1170 hộp khẩu trang. Tính số hộp khẩu trang mà mỗi tổ phải làm theo kế hoạch. + Cho phương trình: x2 + 2mx + 2m – 1 = 0 (tham số m). a) Giải phương trình khi m = -3. b) Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 ≤ 0 < x2. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. 1) Chứng minh tứ giác BFEC nội tiếp. 2) Tia AO cắt đường tròn (O) tại K. Chứng minh AB. AC = AK. AD. 3) Gọi M là trung điểm của BC. Chứng minh ba điểm H, M, K thẳng hàng. Cho BC cố định, A chuyển động trên cung lớn BC sao cho tam giác ABC có ba góc nhọn, chứng minh diện tích hình tròn ngoại tiếp tam giác AEF không đổi.
Đề KSCL Toán 9 năm 2020 - 2021 phòng GDĐT quận Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT quận Hai Bà Trưng – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Hai ngày 24 tháng 05 năm 2021. Trích dẫn đề KSCL Toán 9 năm 2020 – 2021 phòng GD&ĐT quận Hai Bà Trưng – Hà Nội : + Cho parabol 2 y x P và đường thẳng y mx 2 d (m là tham số). a) Chứng minh P và d luôn cắt nhau tại hai điểm phân biệt A và B nằm về hai phía của trục tung. b) Tìm m để diện tích tam giác OAB bằng 3 (O là gốc tọa độ). + Cho đường tròn (O R) đường kính AB. Lấy điểm C thuộc đường tròn sao cho AC R; điểm D thuộc cung nhỏ BC (D khác B C). Kéo dài AC và BD cắt nhau tại E; kẻ EH vuông góc với AB tại H (H thuộc AB), EH cắt AD tại I. a) Chứng minh tứ giác AHDE là tứ giác nội tiếp. b) Kéo dài DH cắt (O R) tại điểm thứ hai là F. Chứng minh CF song song với EH và tam giác BCF là tam giác đều. c) Giả sử điểm D thay đổi trên cung nhỏ BC nhưng vẫn thỏa mãn điều kiện của đề bài. Xác định vị trí của D để chu vi tứ giác ABDC đạt giá trị lớn nhất. + Cho ba số thực dương abc có tổng thỏa mãn điều kiện abc 3. Chứng minh bất đẳng thức sau?
Đề KSCL môn Toán lớp 9 năm 2020 - 2021 trường THCS Nguyễn Du - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL môn Toán lớp 9 năm 2020 – 2021 trường THCS Nguyễn Du – Hà Nội; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 26 tháng 05 năm 2021. Trích dẫn đề KSCL môn Toán lớp 9 năm 2020 – 2021 trường THCS Nguyễn Du – Hà Nội : + Trong mặt phẳng tọa độ Oxy, cho parabol 2 Pyx và đường thẳng d y mx 3. a) Chứng minh với mọi giá trị của m, (d) luôn cắt (P) tại hai điểm phân biệt có hoành độ 1 2 x x. b) Tìm tất cả các giá trị của m để 2 1 2 x mx 4. + Cho tam giác ABC nhọn (AB < AC), nội tiếp đường tròn (O). Các đường cao AD, BE, CF cùng đi qua trực tâm H. Gọi M N lần lượt là hình chiếu vuông góc của D lên AB AC. Đường thẳng MN cắt BE tại điểm P. Gọi S G lần lượt là giao điểm của EF MN với đường thẳng BC. 1) Chứng minh bốn điểm AM DN cùng thuộc một đường tròn. 2) Chứng minh tứ giác BMPD là tứ giác nội tiếp và tứ giác DPEN là hình chữ nhật. 3) Gọi K là điểm đối xứng với D qua A, và L là hình chiếu vuông góc của D lên SK. Chứng minh G là trung điểm của đoạn thẳng SD và trung điểm của đoạn thẳng DL nằm trên đường tròn (O). + Cho a b là các số thực dương thỏa mãn 33 55 abab. Tìm giá trị lớn nhất của biểu thức 2 2 P a ab b.
Đề KSCL Toán 9 đợt 3 năm 2020 - 2021 phòng GDĐT Kim Thành - Hải Dương
Đề KSCL (khảo sát chất lượng) Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề KSCL Toán 9 đợt 3 năm 2020 – 2021 phòng GD&ĐT Kim Thành – Hải Dương : + Hai tổ sản xuất cùng may một loại áo. Nếu tổ thứ nhất may trong 2 ngày, tổ thứ hai may trong 3 ngày thì cả hai tổ may được 470 chiếc áo. Biết rằng trong một ngày tổ thứ nhất may được nhiều hơn tổ thứ hai là 10 chiếc áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo? + Cho phương trình: x^2 + 3x + m – 1 = 0 (x là ẩn số). Tìm m để phương trình có hai nghiệm x1; x2 thỏa mãn. + Cho các số x, y, z, t không âm thoả mãn: x.y + yz + zt + tx = 1. Tìm giá trị nhỏ nhất của biểu thức: 5×2 + 4y2 + 5z2 + t2.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6