Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nắm trọn chuyên đề mũ - logarit và tích phân

Cuốn sách gồm 455 trang, được biên soạn bởi nhóm tác giả Tư Duy Toán Học 4.0: Phan Nhật Linh, Nguyễn Duy Hiếu, Nguyễn Khánh Linh, Lê Huy Long, tóm tắt toàn bộ lý thuyết và phương pháp giải các dạng toán, các ví dụ minh họa và bài tập rèn luyện từ cơ bản đến nâng cao chuyên đề mũ – logarit và tích phân, giúp các em hoàn thiện kiến thức, rèn tư duy và rèn luyện tốc độ làm bài; tất cả các bài tập trong sách đều có giải chi tiết 100% tiện lợi cho việc so sánh đáp án và tra cứu thông tin. Mục lục cuốn sách nắm trọn chuyên đề mũ – logarit và tích phân: PHẦN I . MŨ VÀ LOGARIT. CHỦ ĐỀ 1. MỞ ĐẦU VỀ LŨY THỪA. Dạng 1. Tính, rút gọn, so sánh các số liên quan đến lũy thừa. CHỦ ĐỀ 2. MŨ – LOGARIT. Dạng 1. Biến đổi mũ – logarit. CHỦ ĐỀ 3. HÀM SỐ LŨY THỪA, MŨ VÀ LOGARIT. Dạng 1. Bài tập về hàm số lũy thừa, hàm số mũ và hàm số logarit. CHỦ ĐỀ 4. PHƯƠNG TRÌNH MŨ VÀ PHƯƠNG TRÌNH LOGARIT. Dạng 1. Bài tập về phương trình mũ, phương trình logarit số 01. Dạng 2. Bài tập về phương trình mũ, phương trình logarit số 02. Dạng 3. Bài tập về phương trình mũ, phương trình logarit chứa tham số 01. Dạng 4. Bài tập về phương trình mũ, phương trình logarit chứa tham số 02. CHỦ ĐỀ 5. BPT MŨ – BPT LOGARIT. Dạng 1. Biện luận nghiệm của phương trình mũ – logarit. Dạng toán tìm GTLN và GTNN của hàm số mũ – logarit. Dạng toán liên quan đến hàm đặc trưng. Dạng toán tìm cặp số nguyên thỏa mãn điều kiện. Dạng toán lãi suất. Dạng toán thực tế liên quan đến sự tang trưởng. Dạng toán thường xuất hiện trong đề thi của Bộ GD&ĐT. PHẦN II . NGUYÊN HÀM – TÍCH PHÂN. CHỦ ĐỀ 1. NGUYÊN HÀM. Dạng 1. Phương pháp tính nguyên hàm. CHỦ ĐỀ 2. TÍCH PHÂN. Dạng 1. Phương pháp tính tích phân. Dạng 2. Tích phân cho bởi nhiều hàm. Dạng 3. Tích phân hàm ẩn phần 1. Dạng 3. Tích phân hàm ẩn phần 2. Dạng 4. Ứng dụng tích phân tính diện tích, thể tích. Dạng 5. Tích phân trong đề thi của Bộ GD&ĐT.

Nguồn: toanmath.com

Đăng nhập để đọc

Sử dụng tính chất của đồ thị hàm số để tính diện tích hình phẳng
Tài liệu gồm 58 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC, nội dung các dạng toán xoay quanh bài toán ứng dụng tích phân để tính diện tích hình phẳng với giả thiết bài toán cho bởi đồ thị hàm liên quan. + Dạng toán 1. Sử dụng định nghĩa xác định công thức diện tích. + Dạng toán 2. Dựa vào các điểm đồ thị đi qua xác định hàm số đi đến công thức tính. + Dạng toán 3. Dựa vào tâm đối xứng, trục đối xứng của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 4. Dựa vào tiếp tuyến của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 5. Biến đổi đồ thị đưa về tính toán đơn giản. + Dạng toán 6. Tính diện tích dựa vào việc chia nhỏ hình. + Dạng toán 7. Toán thực tế với giả thiết có đồ thị hàm liên quan. Các bài toán trắc nghiệm được trích dẫn và phát triển dựa trên các bài toán trong đề thi THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết.
Các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG
Tài liệu ứng dụng của tích phân gồm 113 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng của tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 1). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 1). + Dạng 1.2 Bài toán có điều kiện (Trang 13). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 23). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 23). + Dạng 2.2 Bài toán có điều kiện (Trang 28). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 30). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 30). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 33). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 37). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 37). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 41). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 45). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 48). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 48). + Dạng 1.2 Bài toán có điều kiện (Trang 60). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 74). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 74). + Dạng 2.2 Bài toán có điều kiện (Trang 81). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 84). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 84). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 88). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 91). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 91). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 99). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 108). Xem thêm : + Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG + Các dạng toán tích phân thường gặp trong kỳ thi THPTQG
Các dạng toán tích phân thường gặp trong kỳ thi THPTQG
Tài liệu tích phân và các phương pháp tìm tích phân gồm 109 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán tích phân thường gặp trong kỳ thi THPTQG: Phần A . CÂU HỎI Dạng 1. Tích phân cơ bản (Trang 2). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 2). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 4). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 7). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 10). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 11). + Dạng 4.1 Hàm số tường minh (Trang 11). + Dạng 4.1.1 Hàm số chứa căn thức (Trang 11). + Dạng 4.1.2 Hàm số chứa hàm lượng giác (Trang 14). + Dạng 4.13. Hàm số chứa hàm số mũ, logarit (Trang 16). + Dạng 4.1.4 Hàm số hữu tỷ, đa thức (Trang 17). + Dạng 4.2 Hàm số không tường minh (hàm ẩn) (Trang 18). Dạng 5. Tích phân TỪNG PHẦN (Trang 22). + Dạng 5.1 Hàm số tường minh (Trang 22). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 25). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 29). Dạng 7. Tích phân của một số hàm số khác (Trang 31). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 31). + Dạng 7.2 Tích phân nhiều công thức (Trang 32). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 33). Dạng 8. Một số bài toán tích phân khác (Trang 34). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tích phân cơ bản (Trang 38). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 38). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 40). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 43). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 46). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 48). + Dạng 4.1. Hàm số tường minh (Trang 48). + Dạng 4.1.1. Hàm số chứa căn thức (Trang 48). + Dạng 4.1.2. Hàm số chứa hàm lượng giác (Trang 54). + Dạng 4.1.3. Hàm số chứa hàm số mũ, logarit (Trang 57). + Dạng 4.1.4. Hàm số hữu tỷ, đa thức (Trang 59). + Dạng 4.2. Hàm số không tường minh (hàm ẩn) (Trang 60). Dạng 5. Tích phân TỪNG PHẦN (Trang 68). + Dạng 5.1 Hàm số tường minh (Trang 68). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 74). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 88). Dạng 7. Tích phân của một số hàm số khác (Trang 91). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 91). + Dạng 7.2. Tích phân nhiều công thức (Trang 95). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 95). Dạng 8. Một số bài toán tích phân khác (Trang 100).
Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG
Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm gồm 75 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề nguyên hàm cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 2). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 2). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 11). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 16). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 16). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 17). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 18). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 18). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 21). Dạng 4. Nguyên hàm từng phần (Trang số 22). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 22). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 25). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 26). Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 30). [ads] PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 33). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 33). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 38). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 44). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 44). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 45). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 47). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 47). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 51). Dạng 4. Nguyên hàm từng phần (Trang số 53). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 53). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 57). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 60) Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 69). Tài liệu giúp quý thầy, cô giáo có nguồn bài tập chất lượng về nguyên hàm để tham khảo, các em học sinh học tốt chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6