Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán phương trình đường thẳng Oxyz - Nguyễn Bảo Vương

Tài liệu gồm 28 trang do thầy Nguyễn Bảo Vương biên soạn tuyển tập các dạng toán phương trình đường thẳng trong hệ trục tọa độ Oxyz, trong mỗi dạng toán đều được trình bày chi tiết các bước giải toán, ví dụ minh họa và các bài tập trắc nghiệm tự luyện. Các dạng toán phương trình đường thẳng Oxyz được đề cập trong tài liệu: + Dạng 1. Phương trình đường thẳng + Dạng 2. Viết phương trình đường thẳng + Dạng 3. Vị trí tương đối của đường thẳng với mặt phẳng + Dạng 4. Vị trí tương đối của hai đường thẳng + Dạng 5. Vị trí tương đối của mặt cầu và đường thẳng Xem thêm : + Bài giảng hệ tọa độ trong không gian – Nguyễn Bảo Vương + Các dạng toán phương trình mặt phẳng – Nguyễn Bảo Vương

Nguồn: toanmath.com

Đăng nhập để đọc

Giải nhanh hình học không gian bằng máy tính Casio - Hà Ngọc Toàn
Việc BGD ra đề thi trắc nghiệm đối với môn Toán đa phần đối với học sinh là rất mới nhất là tốc độ để giải quyết các bài toán về hình học không gian. Để giúp các em có cách nhanh nhất giải các bài toán trắc nghiệm thầy biên soạn chuyên đề sử dụng casio giải nhanh hình học không gian, mặc dù ở phần này casio chỉ hỗ trợ chúng ta một phần rất nhỏ nhưng nó cũng giảm bớt được thời gian chọn đáp án, các em chú ý rằng phương pháp này không phải là toàn năng và nhanh nhất để giải toán, có những bài sử dụng phương pháp truyền thống giải nhanh hơn rất nhiều. Vì thế các em coi phương pháp này là để tham khảo và học hỏi thêm. Phương pháp tọa độ hóa trong không gian ta cần phải thực hiện được các yêu cầu sau: + Bước 1: Chọn hệ trục tọa độ Oxyz thích hợp ( chú ý đến vị trí của gốc O), chọn hệ trục sao cho có 3 đường thẳng đôi một vuông góc với nhau. + Bước 2: Xác định tọa độ các điểm có liên quan ví dụ đề bài yêu cầu tính thể tích của khối chop SABC thì chúng ta chỉ cần tìm tọa độ các điểm S;A;B;C và khi xác định tọa độ các điểm ta có thể dựa vào những yếu tố sau: [ads] – Ý nghĩa hình học của tọa độ điểm khi các điẻm nằm trên cá trục tọa độ, mặt phẳng tọa độ ví dụ điểm A nằm trên truc Ox khi đó A( a;0;0) hay điểm A nằm trên mặt phẳng oxy khi đó A( a;b;0) , chú ý việc xác định tọa độ điểm là quan trọng nhất nên rất cẩn trọng, và việc xác định tọa độ điểm để tìm ra A(x;y;z) thì từ điểm đó ta phải kẻ vuông góc vào các hệ trục tọa độ đã chọn. – Dựa vào các quan hệ hình học bằng nhau, vuông góc, song song, cùng phương, thẳng hàng, điểm chia đoạn thẳng để tìm tọa độ. – Xem điểm cần tìm là giao điểm của đường thẳng, mặt phẳng. – Dựa vào các quan hệ về góc của đường thẳng, mặt phẳng. + Bước 3: Sử dụng kiến thức về tọa độ để giải quyết bài toán.
Phương pháp trắc nghiệm hình học giải tích mặt phẳng và không gian - Mộng Hy, Thế Cấp
Cuốn sách gồm 247 trang gồm lý thuyết, phương pháp giải toán và các bài tập trắc nghiệm có lời giải chi tiết chủ đề hình học giải tích. Cuốn sách gồm 10 chuyên đề được chia làm 2 phần: phần 1 là phần hình học giải tích trong mặt phẳng do TS. Đậu Thế Cấp biên soạn, phần 2 là phần hình học giải tích trong không gian do PGS.TS Nguyễn Mộng Hy biên soạn. Cuối cùng có phần trắc nghiệm giúp người đọc hoàn thiện hơn kiến thức của mình. Phần 1. Hình học giải tích trong mặt phẳng Chuyên đề 1. Vectơ và tọa độ trong mặt phẳng Chuyên đề 2. Đường thẳng trong mặt phẳng Chuyên đề 3. Đường tròn Chuyên đề 4. Elip Chuyên đề 5. Hypebol Chuyên đề 6. Parabol [ads] Phần 2. Hình học giải tích trong không gian Chuyên đề 7. Vectơ tọa độ trong không gian Chuyên đề 8. Mặt phẳng Chuyên đề 9. Đường thẳng trong không gian Chuyên đề 10. Mặt cầu
Phương pháp tọa độ hóa bài toán hình không gian - Trần Duy Thúc
Tài liệu gồm 24 trang giới thiệu phương pháp tọa độ hóa bài toán hình không gian và các ví dụ minh họa có lời giải chi tiết. Ưu điểm của phương pháp: Khi ta chọn được tọa độ các điểm thì chỉ cần áp dụng các kiến thức hình giải tích như khoảng cách, góc, chứng minh vuông góc. Tuy nhiên, với một số em học sinh thì việc tính được tọa độ là vấn đề? Về nguyên tắc thì em có thể chọn gốc tọa độ nằm bất cứ chổ nào, nhưng chọn chổ nào thì việc tính tọa độ là thuận lợi nhất? Sai lầm của không ít người dẫn đến việc tính tọa độ các điểm phức tạp là cứ thấy chân đường cao của hình chóp là chọn làm gốc tọa độ. Trong một số trường hợp em chọn như vậy sẽ dẫn đến việc tính tọa độ khó khăn và dễ bị chán nản. Để thuận lợi cho việc tính tọa độ em nhớ nguyên tắc sau đây: [ads] + Vẽ hình thực của đa giác đáy ra bên cạnh. + Ưu tiên chọn gốc tọa độ là góc vuông của đa giác đáy chứ không phải là ưu tiên chân đường cao. Tất nhiên nếu chân đường cao mà trùng gốc vuông ở đáy thì ta chọn gốc tọa ngay điểm đó luôn là tốt. + Nhìn vào hình thực này để tính tọa độ các điểm trong mặt phẳng đáy trước. Sau đó tính các điểm phát sinh và đỉnh. + Cứ quan tâm vào việc chọn trục Ox Oy ở đáy, sau đó gắn trục Oz vào là xong.
Gắn hệ tọa độ Oxyz để giải các bài toán hình học không gian - Phương Nguyễn
Tài liệu gồm 34 trang hướng dẫn giải bài toán hình học không gian bằng cách gắn hệ trục tọa độ Oxy. Tài liệu do tác giả Nguyễn Phương biên soạn. Như các bạn đều biết , môn Toán là một môn rất quan trọng và có tầm ảnh hưởng rất lớn tới việc xét tuyển vào Đại Học hay Cao Đẳng sau này. Do đó để có được số điểm cao trong môn này, ta cần phải có 1 vốn kiến thức cần thiết và hiểu rõ những khái niệm , bản chất toán học. Và trong chuyên đề ngày hôm nay mình sẽ đề cập đến 1 trong 3 câu hình học luôn xuất hiện trong đề thi đại học. Đó chính là các bài toán về hình học không gian thuần túy (cổ điển) với phương pháp gắn hệ trục Oxyz và giải như một bài toán giải tích bình thường. Đa số trong các bài toán này, mình thường thấy các bạn chỉ làm được 1/2 yêu cầu đề bài (giống mình lúc trước hihi :D). Các câu hỏi còn lại như tìm khoảng cách giữa 1 điểm đến đường thẳng hay tìm khoảng cách giữa 2 đường thẳng hoặc chứng minh song song, vuông góc v.v….. các bạn đều bỏ (và mình cũng vậy :D). Lý do là bởi vì bạn đã quên 1 số kiến thức về hình học ở lớp 11 và các cách tư duy dựng hình. Vì thế mình sẽ giúp các bạn vượt qua các bài toán ấy bằng phương pháp tọa độ hóa này. [ads] Ưu điểm: + Dễ hiểu + Dễ làm + Công việc chính là chỉ tính toán + Không cần chứng minh nhiều + Phù hợp với các bạn học hình yếu Nhược điểm: + Tính toán dễ sai + Đôi khi sẽ chậm hơn so với cách cổ điển + Ít được sử dụng + Đôi khi nhìn rất dễ nhầm lẫn

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6