Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh Toán 12 THPT năm 2018 - 2019 sở GD và ĐT Hải Dương

Đề thi chọn học sinh giỏi tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm tuyển chọn các em học sinh lớp 12 có năng lực môn Toán đang học tập tại tỉnh Hải Dương để bồi dưỡng, tạo điều kiện cho các em thử sức ở kỳ thi HSG môn Toán cấp Quốc gia. Kỳ thi được diễn ra vào ngày 04/10/2018, đề thi gồm 1 trang với 5 bài toán tự luận, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông. Gọi S là tâm của hình vuông A’B’C’D’. SA, BC có trung điểm lần lượt là M và N. Tính thể tích của khối chóp S.ABC theo a, biết MN tạo với mặt phẳng (ABCD) một góc bằng 60 độ và AB = a. + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT tổ chức vào tháng 3 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD ĐT Khánh Hòa (Vòng 1)
Nội dung Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD ĐT Khánh Hòa (Vòng 1) Bản PDF Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi THPT cấp Quốc gia năm 2021 môn Toán (vòng 1). Đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2021 sở GD&ĐT Khánh Hòa (Vòng 1) : + Cho tam giác nhọn không cân ABC có trực tâm H và nội tiếp đường tròn (O). Gọi E, F lần lượt là chân đường cao hạ từ B, C của tam giác ABC. M là giao điểm của đường tròn ngoại tiếp tam giác AEF với đường tròn (O) (M không trùng A). Đường thẳng BH cắt đường tròn (O) tại D (D không trùng B). I là trung điểm BC. a) Chứng minh rằng ba đường thẳng AM, EF, BC đồng quy tại một điểm. b) Đường tròn ngoại tiếp tam giác HEI cắt BC tại N (N không trùng I). Đường  thẳng EN cắt đường thẳng qua H và song song với BC tại K. Chứng minh rằng bốn điểm M, H, K, D cùng thuộc một đường tròn. + Cho n là một số nguyên dương, xét tập hợp S = {1,2,3,…,n}. Gọi p, q lần lượt là số tập con khác rỗng của S và có số phần tử là chẵn, lẻ. Chứng minh rằng p – q =  -1. + Cho m, n là các số nguyên dương và một bảng hình chữ nhật kẻ ô vuông cóm hàng và n cột (nghĩa là bảng gồm m x n ô vuông). Xét các tập hợp T khác  rỗng gồm một số các ô vuông thuộc bảng trên sao cho mỗi hàng và mỗi cột của bảng đều có chứa ít nhất một ô vuông của T. Gọi p là số các tập hợp T có số phần tử là số chẵn và q là số các tập hợp T có số phần tử là số lẻ. Chứng minh rằng p – q =  (-1)m+n+1.
Đề chọn đội tuyển HSG lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Quảng Bình
Nội dung Đề chọn đội tuyển HSG lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Quảng Bình Bản PDF Thứ Hai ngày 21 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Bình tổ chức kỳ kiểm tra chọn đội tuyển chính thức dự thi học sinh giỏi môn Toán cấp Quốc gia lớp 12 THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Trên các cạnh AB, AC của tam giác ABC lần lượt lấy hai điểm A, B. Hai đoạn thẳng BB1 và CC1 cắt nhau tại X và hai đoạn thẳng B1C1 và AX cắt nhau tại P. Đường tròn ngoại tiếp các tam giác BXC1, CXB1 cắt nhau tại điểm thứ hai Y và cắt cạnh BC lần lượt tại D và E. a) Giả sử B1C1 // BC và gọi H, K lần lượt là hình chiếu vuông góc của Y lên AB và AC. Chứng minh rằng: YH/AB = YK/AC. b) Giả sử B1E và C1D cắt nhau tại Q và đường thẳng B1D cắt đường thẳng C1E tại R. Chứng minh ba điểm P, Q và R thẳng hàng. + Cho tập hợp X có 2020 phần tử. Bạn An chia tập X thành 2 tập hợp A và B thỏa mãn |A| = |B|; A ∩ B = Ø, bằng k cách khác nhau. Tìm giá trị nhỏ nhất của k sao cho với 2 phần tử bất kỳ của X, luôn có ít nhất 1 cách trong k cách chia mà bạn An chia chúng vào 2 tập hợp khác nhau. + Gọi n là số nguyên dương thỏa mãn điều kiện 2n – 5 | 3(n! + 1). a) Giả sử tồn tại n > 4 thỏa mãn điều kiện trên. Chứng minh rằng 2n  – 5 là số nguyên tố. b) Tìm tất cả các số nguyên dương n thỏa mãn điều kiện trên.
Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD ĐT Đồng Tháp
Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD ĐT Đồng Tháp Bản PDF Ngày 28 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Tháp tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán dự thi cấp Quốc gia năm 2021. Đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2021 môn Toán sở GD&ĐT Đồng Tháp : + Xét số T = 3^n – 2^n, trong đó n là số nguyên dương, n >= 2. Chứng minh rằng: a) Không tồn tại n để T là bình phương của một số nguyên tố. b) Nếu T là lập phương của một số nguyên tố thì n là một số nguyên tố. + Với mỗi m thuộc N* ta kí hiệu: a(2m) = (m!)^2, a(2m + 1) = (m!).((m + 1)!). Cho đa thức p(x) hệ số nguyên, có bậc lớn hơn hoặc bằng k (k thuộc N*) và có ít nhất k nghiệm nguyên phân biệt. Xét số nguyên n (n khác 0) sao cho đa thức q(x) = p(x) – n có ít nhất một nghiệm nguyên. Chứng minh rằng |n| >= a(k). + Cho tam giác ABC, đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB tại D, E, F. 1. Gọi S là giao điểm của EF với BC. Chứng minh SI vuông góc với AD. 2. Đường thẳng d thay đổi, đi qua S và cắt đường tròn (I) tại hai điểm phân biệt M, N. Các tiếp tuyến tại M, N của (I) cắt nhau tại T. Chứng minh T thuộc một đường thẳng cố định. 3. Gọi K là giao điểm của ME và NF, G là giao điểm của MC và NB. Chứng minh K và G cùng thuộc đường thẳng AD.
Đề chọn đội tuyển HSG Toán năm 2021 sở GD ĐT tỉnh Đồng Nai
Nội dung Đề chọn đội tuyển HSG Toán năm 2021 sở GD ĐT tỉnh Đồng Nai Bản PDF Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn đội dự tuyển thi học sinh giỏi Quốc gia năm 2021 môn Toán. Đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán năm 2021 sở GD&ĐT tỉnh Đồng Nai : + Cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB khác A và B, gọi (O) là đường tròn ngoại tiếp tam giác BCD, tiếp tuyến của đường tròn (O) tại D cắt đường thẳng AC tại điểm E, vẽ tiếp tuyến EF của đường tròn (O) tại tiếp điểm F khác D. Gọi I là giao điểm của hai đường thẳng BF và CD, gọi K là giao điểm của hai đường thẳng AI và BC. Chứng minh BK = 2CK. + Một tổ gồm có 5 học sinh được phân công trực nhật 6 ngày trong tuần từ thứ hai đến thứ bảy thỏa mãn các điều kiện sau: Mỗi ngày đều có từ 1 đến nhiều nhất là 2 học sinh trực và trong cả tuần mỗi học sinh trực đúng 2 lần, mỗi lần trực 1 ngày. Tính số các cách phân công trực nhật của tổ thỏa mãn các điều kiện đã cho. + Cho dãy số (un) xác định bởi un+1 = un + 1/2021n với mọi n thuộc N*. Chứng minh rằng tồn tại số nguyên dương n sao cho un > 0.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6