Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán 12 năm 2024 - 2025 trường Quốc Học Quy Nhơn - Bình Định

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 - 2022 sở GDĐT Hà Nội
Sáng thứ Năm ngày 23 tháng 12 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi cấp thành phố môn Toán lớp 12 THPT năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 12 THPT năm 2021 – 2022 sở GD&ĐT Hà Nội : + Chứng minh rằng với mọi m khác 2 hàm số y có đúng 4 điểm cực trị. + Chọn ngẫu nhiên một số từ tập các số tự nhiên có 8 chữ số. Tính xác suất để chọn được số chia hết cho 9 và chứa nhiều nhất một chữ số 9. + Trong mặt phẳng (P), cho xOy = 90° và tia Oz thỏa mãn xOz = 30°; zOy = 60°. Trên tia Oz lấy điểm I sao cho OI = 2a. Trên đường thẳng d đi qua O và vuông góc với (P), lấy điểm S sao cho OS = a. Mặt phẳng (Q) thay đổi đi qua SI và cắt các tia Ox, Oy lần lượt tại A, B (A khác O và B khác O). 1) Tính góc giữa (P) và (Q) khi I là trung điểm AB. 2) Tìm giá trị nhỏ nhất của thể tích khối chóp S.OAB.
Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Nghệ An
Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2021 – 2022. Đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Tìm số điểm cực trị của hàm số g(x). + Trong quá trình truy vết lịch sử tiếp xúc của bệnh nhân Covid-19 ở một trường học, trung tâm y tế xác định được 3 giáo viên và một số học sinh có sự liên quan đến bệnh nhân đó. Người ta chọn ngẫu nhiên 10 người trong số các giáo viên và học sinh liên quan để làm xét nghiệm gộp. Biết rằng xác suất để trong 10 người được chọn có 3 giáo viên bằng 6 lần xác suất trong 10 người được chọn đều là học sinh. Tính xác suất để trong 10 người được chọn làm xét nghiệm có nhiều nhất 2 giáo viên. + Cho a, b, c là các số thực không âm thay đổi thỏa mãn điều kiện. Tìm giá trị lớn nhất của biểu thức P = 2a3 + b3 + c3.
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2021 - 2022 sở GDĐT Bình Định
Đề thi chọn học sinh giỏi cấp tỉnh Toán 12 năm 2021 – 2022 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào thứ Tư ngày 24 tháng 11 năm 2021.
Đề thi học sinh giỏi tỉnh Toán 12 chuyên năm 2021 - 2022 sở GDĐT Thừa Thiên Huế
Đề thi học sinh giỏi tỉnh Toán 12 chuyên năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 12 chuyên năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Với p là số nguyên dương, đặt S(p). a) Chứng minh S(7) không chia hết cho 7. b) Tìm tất cả các số nguyên tố p (p < 2022) sao cho S(p) không chia hết cho p. + Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Gọi D, E, F lần lượt là các tiếp điểm của đường tròn (I) với các cạnh BC, CA, AB. Các điểm X, Y lần lượt là giao điểm của đường thẳng EF với các đường thẳng MN, CI. Gọi L là điểm chính giữa của cung BC chứa điểm A của đường tròn (O). a) Chứng minh các đường thẳng AD, BE, CF đồng quy. b) Chứng minh BY CY và Y nằm trên đường thẳng MP. c) Chứng minh đường thẳng LI đi qua trung điểm của đoạn XY. + Một hình chữ nhật gồm hai ô vuông đơn vị kích thước 2×1 hoặc 1×2 được gọi là một domino. Một mô hình là một cách đặt các domino lên một bảng vuông nxn (n nguyên dương) ô vuông đơn vị sao cho mỗi domino phủ đúng 2 ô của bảng và không có một ô nào được phủ bởi 2 domino khác nhau (tức là các domino không xếp chồng lên nhau). Ta gọi một domino là “liên quan” đến một hàng (hoặc một cột) nếu nó phủ ít nhất một ô của hàng (hoặc cột) đó. Gọi trị số của một hàng (hoặc một cột) là số các domino “liên quan” đến hàng (hoặc cột) đó. Một mô hình được gọi là cân bằng nếu tồn tại số nguyên dương k sao cho mỗi hàng và mỗi cột của nó đều có trị số là k. Chẳng hạn tồn tại mô hình cân bằng cho bảng 3×3 với k = 1 (xem mô hình như hình bên). a) Chứng minh rằng tồn tại các mô hình cân bằng với n. b) Tồn tại mô hình cân bằng với n = 2021 hay không? Nếu có, hãy tìm số domino ít nhất cần thiết để có thể thiết lập được mô hình cân bằng cho bảng đó.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6