Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi gồm 01 trang với 10 bài toán dạng ghi kết quả và 03 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn, huyện Đức Thọ, tỉnh Hà Tĩnh); kỳ thi được diễn ra vào thứ Ba ngày 10 tháng 01 năm 2023. Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Gọi M là hình chiếu vuông góc của gốc tọa độ O trên đường thẳng y = (m + 2)x + m – 5 với m là tham số. Khi OM đạt giá trị lớn nhất thì giá trị của m bằng bao nhiêu? + Cho tam giác ABC vuông tại A có 4AB = 3AC, BC = 25. Vẽ hình chữ nhật DEFG nội tiếp tam giác ABC sao cho D thuộc cạnh AB, E thuộc cạnh AC, F và G thuộc cạnh BC. Tính diện tích lớn nhất của hình chữ nhật DEFG. + Cho nửa đường tròn tâm O, đường kính AB = 2R. Lấy điểm M bất kỳ trên nửa đường tròn (M khác A, B), các tiếp tuyến tại A và M của nửa đường tròn (O) cắt nhau tại K. Gọi E là giao điểm của AM và OK. Đường thẳng qua O vuông góc với AB cắt BM tại N. a) Tính BM, AN theo R. b) Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh rằng EF song song với AB và BH.OK = OE.AB.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Tìm số nguyên n sao cho C = n2 – 3n + 4 là số chính phương. b) Cho các số nguyên a, b, c thỏa mãn a + b + c = 2023. Chứng minh rằng a3 + b3 + c3 – 1 chia hết cho 6. + Cho tam giác ABC vuông tại A, Gọi D, E lần lượt là trung điểm của BC, AC. Đường thẳng qua C vuông góc với BC cắt DE tại F, H là hình chiếu của C lên BF. a) Chứng minh FH.FB = FE.FD. b) Chứng minh tam giác ABH đồng dạng với tam giác ECH. c) Gọi I là trung điểm của FE. Chứng minh A, H, I thẳng hàng. + Cho các số dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = 2 25 2 9 a ab b a c.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Vân Canh - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Vân Canh, tỉnh Bình Định; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Vân Canh – Bình Định : + Cho ∆ABC có đường phân giác trong AD. Trên tia đối của tia DA lấy điểm E sao cho ECD BAD. a. Chứng minh AD.DE = BD.CD. b. Chứng minh 2 AD AB.AC BD.CD. + Cho tam giác ABC nhọn và một điểm P thuộc miền trong tam giác. Gọi DEF theo thứ tự là hình chiếu của P trên các cạnh BC CA AB. a. Chứng minh 2 2 2 22 2 BD CE AF DC EA FB. b. Xác định vị trí điểm P trong ∆ABC để tổng 22 2 DC EA FB đạt giá trị nhỏ nhất. + Tìm hệ số a để đa thức f(x) = x3 – 8×2 + ax – 5 chia hết cho đa thức g(x) = x2 – 3x + 1.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Nguyễn Du - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Du, thành phố Đà Lạt, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 21 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Nguyễn Du – Lâm Đồng : + Bạn An mua một số quyển vở và bút máy hết tất cả là 102 nghìn đồng. Biết giá mỗi quyển vở là 12 nghìn đồng, giá mỗi cây bút là 10 nghìn đồng. Hỏi bạn An mua được bao nhiêu quyển vở và bao nhiêu cây bút? + Định mức giá điện sinh hoạt năm 2021 như sau: Số điện (kWh) Giá bán điện (đồng/kWh) Bậc 1: Từ 0 – 50 kWh 1.678 Bậc 2: Từ 51 – 100 kWh 1.734 Bậc 3: Từ 101 – 200 kWh 2.014 Bậc 4: Từ 201 – 300 kWh 2.536 Bậc 5: Từ 301 – 400 kWh 2.834 Bậc 6: Từ 401 kWh trở lên 2.927. Tiền điện được tính theo bậc, với thuế giá trị gia tăng (GTGT) 10%. a) Trong tháng 6/2021, nhà bạn Xuân sử dụng hết 230 kWh điện. Tính tiền điện nhà bạn Xuân phải trả. b) Cũng trong tháng đó, nhà bác Hạ đã phải trả 548 680 đồng tiền điện. Hỏi nhà bác Hạ đã sử dụng hết bao nhiêu kWh điện? + Từ tấm nhôm hình vuông cạnh 6 dm. Người ta muốn cắt một hình thang (phần tô đậm trong hình vẽ). Tìm tổng x y để diện tích hình thang cắt được nhỏ nhất.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chọn đội tuyển học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 10 năm 2023. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Cho a, b là các số nguyên thỏa mãn a2 + 2b + 3 và b2 + 2a + 3 đều chia hết cho 5. Chứng minh a + b + 2023 chia hết cho 5. + Cho tam giác ABC nhọn, cân tại A, đường cao AM. Đường thẳng qua B và vuông góc với AB, cắt tia AM tại D. Lấy điểm F bất kì nằm giữa hai điểm B và M. Gọi E là hình chiếu vuông góc của A trên đường thẳng DF. 1) Chứng minh DE.DF = DM.DA và DBF = DEB. 2) Gọi O là trung điểm của AD. Đường thẳng qua O và vuông góc với EC, cắt EA tại S. Chúng minh tam giác EBF đồng dạng với tam giác SOE. 3) Gọi K là trung điểm của EF. Chứng minh CK vuông góc với SD. + Cho bảng ô vuông n x n. Ta tiến hành điền vào mỗi ô vuông 1 × 1 của bảng một số nguyên (các số được điền không nhất thiết phân biệt) thỏa mãn tổng các số trong mỗi mảng ô vuông 3 × 3 luôn dương, đồng thời tổng các số trong mỗi mảng ô vuông 4 × 4 luôn âm. a) Chỉ ra một cách điền số thỏa mãn với n = 5. b) Tìm điều kiện của n để tồn tại một cách điền số thỏa mãn.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6