Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khi nào thì $widehat xOy + widehat yOz widehat xOz$

Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề Khi nào thì $\widehat {xOy} + \widehat {yOz} = \widehat {xOz}$?, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu được khi nào thì xOy + yOz = xOz? + Nắm vững được khái niệm hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. Kĩ năng: + Nhận biết được hai góc kề nhau, hai góc phụ nhau, hai góc bù nhau, hai góc kề bù. + Biết cách cộng số đo hai góc kề nhau có cạnh chung nằm giữa hai cạnh còn lại. + Tính được số đo góc, chỉ ra được tia nằm giữa hai tia. I. LÍ THUYẾT TRỌNG TÂM Tính chất cộng số đo hai góc: + Nếu tia Oy nằm giữa tia Ox và Oz thì xOy + yOz = xOz. + Ngược lại, nếu xOy + yOz = xOz thì Oy nằm giữa hai tia Ox và Oz. Lưu ý: + Ta có thể dùng kết quả sau: Nếu xOy + yOz khác xOz thì Oy không nằm giữa hai tia Ox và Oz. + Cộng liên tiếp: Nếu tia Oy nằm giữa hai tia Ox và Ot; tia Oz nằm giữa hai tia Oy và Ot thì: xOy + yOz + zOt = xOt. Hai góc kề nhau, phụ nhau, bù nhau: + Hai góc kề nhau là hai góc có cạnh chung và hai cạnh còn lại nằm trên hai nửa mặt phẳng đối nhau bờ chứa cạnh chung. + Hai góc phụ nhau là hai góc có tổng số đo bằng 90°. + Hai góc bù nhau là hai góc có tổng số đo bằng 180°. Lưu ý: + Hai góc kề bù là hai góc vừa kề nhau vừa bù nhau. Hai góc kề bù có tổng số đo bằng 180°. + Hai góc cùng phụ (hoặc cùng bù) với một góc thứ ba thì bằng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Tính số đo góc. Sử dụng nhận xét và định nghĩa sau: + Nếu tia Oy nằm giữa hai tia Ox và Oz thì xOy + yOz = xOz. + Hai góc bù nhau có tổng số đo bằng 180°. + Hai góc phụ nhau có tổng số đo bằng 90°. Dạng 2 : Tia nằm giữa hai tia, tính số đo góc. Nếu xOy + yOz = xOz thì tia Oy nằm giữa hai tia Ox và Oz.

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu dạy thêm học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng
Nội dung Tài liệu dạy thêm học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng Bản PDF Tài liệu dạy thêm học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng bao gồm 21 trang. Tài liệu được tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề đoạn thẳng và trung điểm của đoạn thẳng. Tài liệu được thiết kế nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán lớp 6. Phần I của tài liệu là tóm tắt về lý thuyết, giải thích các khái niệm và quy tắc cần biết về đoạn thẳng và trung điểm của đoạn thẳng. Phần II của tài liệu là các dạng bài tập. Dạng bài tập số 1 giúp học sinh nhận biết đoạn thẳng và tính độ dài của đoạn thẳng. Dạng bài tập số 2 liên quan đến việc so sánh độ dài của hai đoạn thẳng. Dạng bài tập số 3 yêu cầu học sinh vẽ đoạn thẳng trên một tia Ox và tìm vị trí của một điểm trên tia đó. Dạng bài tập số 4 giải thích khái niệm trung điểm của đoạn thẳng và cách tính độ dài đoạn thẳng liên quan tới trung điểm. Dạng bài tập số 5 là các bài toán mô phỏng thực tế có liên quan đến đoạn thẳng và trung điểm của đoạn thẳng.Tài liệu này được cung cấp dưới dạng file Word, nhằm đáp ứng nhu cầu của quý thầy cô.
Tài liệu dạy thêm học thêm chuyên đề điểm nằm giữa hai điểm, tia
Nội dung Tài liệu dạy thêm học thêm chuyên đề điểm nằm giữa hai điểm, tia Bản PDF Tài liệu dạy thêm và học thêm chuyên đề điểm nằm giữa hai điểm, tia là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu bao gồm 14 trang với hai phần chính: Tóm tắt lí thuyết và Các dạng bài.Phần I: Tóm tắt lí thuyết cung cấp những kiến thức cần biết về chủ đề điểm nằm giữa hai điểm, tia. Nó giúp học sinh nắm vững lý thuyết và các khái niệm cơ bản về điểm nằm giữa, điểm khác phía và điểm cùng phía.Phần II: Các dạng bài liệt kê và hướng dẫn cách giải từng dạng bài một. Cụ thể, các dạng bài bao gồm:1. Nhận biết điểm thuộc đường thẳng và đường thẳng đi qua điểm: Đề cập đến việc xác định những điểm thuộc đường thẳng và những điểm mà đường thẳng đi qua.2. Vẽ điểm, vẽ đường thẳng theo một số điều kiện cho trước: Hướng dẫn vẽ đường thẳng và điểm theo các điều kiện đặt ra.3. Nhận biết ba điểm thẳng hàng: Giải thích cách kiểm tra xem ba điểm có thẳng hàng hay không bằng cách xem xét xem ba điểm đó có cùng thuộc một đường thẳng hay không.4. Đường thẳng đi qua hai điểm: Sử dụng tính chất "có một đường thẳng và chỉ một đường thẳng đi qua hai điểm" để giải quyết vấn đề.5. Chứng minh nhiều điểm thẳng hàng: Hướng dẫn cách chứng minh một số điểm nằm trong hai đường thẳng và các đường thẳng này có hai điểm chung.6. Vận dụng khái niệm điểm nằm giữa, điểm nằm khác phía, nằm cùng phía: Cung cấp ví dụ và giải thích cách áp dụng nhận xét "nếu điểm O nằm giữa hai điểm A và B, thì hai điểm A và B nằm khác phía với điểm O, hai điểm O và B nằm cùng phía với điểm A, hai điểm O và A nằm cùng phía với điểm B".7. Nhận biết điểm nằm giữa hai điểm khác: Sử dụng nhận xét rằng nếu hai tia OA, OB đối nhau thì điểm O nằm giữa hai điểm A và B.Tài liệu được biên soạn dưới dạng file Word, thuận tiện cho giáo viên và cô giáo. Nó giúp học sinh nắm vững kiến thức và cung cấp các bài tập để thực hành khả năng giải các dạng bài về điểm nằm giữa hai điểm, tia.
Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng
Nội dung Tài liệu dạy thêm học thêm chuyên đề hình có tâm đối xứng Bản PDF Tài liệu dạy thêm và học thêm về chuyên đề hình có tâm đối xứng là một tài liệu học được thiết kế để hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu này bao gồm tổng cộng 14 trang, trong đó có một phần tóm tắt lý thuyết và các phần hướng dẫn phương pháp giải các dạng toán và bài tập liên quan đến chuyên đề hình có tâm đối xứng.Phần tóm tắt lý thuyết của tài liệu giải thích về khái niệm và cách kiểm tra xem một hình có tâm đối xứng hay không. Đầu tiên, để kiểm tra xem một hình có tâm đối xứng hay không, ta có thể lấy một điểm bất kỳ trên hoặc trong hình và lấy đối xứng qua tâm. Nếu điểm đó vẫn thuộc hình ban đầu, thì hình đó có tâm đối xứng. Ngược lại, nếu điểm đó không thuộc hình, thì hình không có tâm đối xứng.Phần tiếp theo của tài liệu trình bày về các dạng bài liên quan đến tâm đối xứng của hình. Đối với những hình có tâm đối xứng, số cạnh của hình (viền ngoài) sẽ là số chẵn. Ví dụ như hình bình hành, hình chữ nhật, hình vuông và hình thoi. Trong thiên nhiên, hình ảnh của bông hoa có tâm đối xứng nằm ở giữa, hình ảnh của cỏ bốn lá cũng có tâm đối xứng. Ngoài ra, tâm đối xứng của hình có số cạnh bằng nhau chính là giao điểm của các đường chéo.Tài liệu cũng giới thiệu về cách kiểm tra xem một chữ có tâm đối xứng hay không. Đầu tiên, ta cần đoán trước tâm đối xứng của chữ (thường là điểm nằm chính giữa chữ), sau đó lấy một điểm bất kỳ và kiểm tra. Nếu có một điểm khác đối xứng với điểm đã chọn mà vẫn thuộc chữ, thì chữ có tâm đối xứng.Một phần khác của tài liệu đề cập đến việc vẽ hình đối xứng qua một điểm. Để vẽ một điểm A' đối xứng với điểm A qua tâm O, ta dựng một đường tròn với tâm O và bán kính là OA. Đường tròn này cắt đường thẳng OA tại điểm A' khác A. Khi đó, điểm A' là điểm đối xứng của A qua O. Để vẽ hai hình đối xứng qua một điểm O, ta chọn một số điểm đặc biệt thuộc hình đó, lấy đối xứng qua O và nối các điểm đó lại để tạo thành hình mới đối xứng với hình ban đầu qua tâm O.Cuối cùng, tài liệu giới thiệu về cách tính độ dài, chu vi và diện tích của hình có tâm đối xứng. Khi tính toán độ dài đoạn thẳng có tâm đối xứng, ta chú ý rằng tâm đối xứng là điểm chính giữa hoặc trung điểm của đoạn thẳng đó. Nói cách khác, khi tâm đối xứng O là trung điểm của đoạn AB, ta có: OA = OB = AB/2. Tài liệu cũng liệt kê một số hình phẳng thường gặp có tâm đối xứng, như hình bình hành, hình vuông, hình chữ nhật, hình thoi và hình lục giác đều. Tâm đối xứng của các hình này tổn tại tại giao điểm của các đường chéo chính hoặc trung điểm của mỗi đường chéo.Để tính toán chu vi và diện tích của các hình có tâm đối xứng, ta có thể áp dụng công thức đã học trong chương IV của môn Toán. Sau khi đo đạc và tính toán độ dài các cạnh và đường chéo, ta có thể sử dụng công thức để tính toán chu vi và diện tích của các hình.Tài liệu này được định dạng file WORD để thuận tiện cho việc sử dụng bởi quý thầy cô giáo.
Tài liệu dạy thêm học thêm chuyên đề hình có trục đối xứng
Nội dung Tài liệu dạy thêm học thêm chuyên đề hình có trục đối xứng Bản PDF Đề bài yêu cầu viết về sản phẩm "Tài liệu dạy thêm học thêm chuyên đề hình có trục đối xứng" có nội dung sau:"Tài liệu gồm 16 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề hình có trục đối xứng, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán lớp 6.PHẦN I. TÓM TẮT LÍ THUYẾT.PHẦN II. CÁC DẠNG BÀI.Dạng 1. Nhận biết hình có trục đối xứng trong thực tế.Dựa vào khái niệm hình có trục đối xứng, học sinh quan sát các hình ảnh để nhận biết hình có trục đối xứng.Dạng 2. Xác định trục đối xứng của một số hình phẳng.Dựa vào khái niệm hình có trục đối xứng, học sinh quan sát các hình vẽ để tìm ra hình có trục đối xứng.Dạng 3. Ứng dụng của trục đối xứng trong cắt chữ và cắt hình.Để cắt một chữ cái và cắt hình có trục đối xứng, ta có thể gấp đôi tờ giấy theo trục đối xứng ấy để cắt. Khi đó chỉ phải cắt một nửa chữ cái và nhận được chữ cái khi mở giấy ra.File WORD (dành cho quý thầy, cô):"Dạy thêm và học thêm là một phương pháp giúp học sinh nắm vững kiến thức và phát triển kỹ năng. Với mục tiêu hỗ trợ giáo viên và học sinh lớp 6 trong quá trình học thêm môn Toán, tài liệu này đã được biên soạn với hình thức tóm tắt lý thuyết và cung cấp hướng dẫn cụ thể về phương pháp giải các dạng toán và bài tập chuyên đề hình có trục đối xứng.Tài liệu gồm tổng cộng 16 trang, trong đó, phần I là tóm tắt lý thuyết về hình có trục đối xứng. Nội dung này được trình bày một cách dễ hiểu, giúp học sinh nắm vững khái niệm và quy tắc liên quan đến trục đối xứng của các hình phẳng. Phần II của tài liệu bao gồm ba dạng bài tập chuyên đề. Dạng bài 1 yêu cầu học sinh nhận biết hình có trục đối xứng trong thực tế. Hướng dẫn trong tài liệu giúp học sinh áp dụng khái niệm hình có trục đối xứng để quan sát và nhận biết các hình ảnh phù hợp.Dạng bài 2 tập trung vào xác định trục đối xứng của một số hình phẳng. Hướng dẫn chi tiết giúp học sinh quan sát và tìm ra đường trục đối xứng của các hình vẽ. Điều này giúp nâng cao khả năng nhận biết và phân loại các hình có trục đối xứng.Dạng bài 3 tập trung vào ứng dụng của trục đối xứng trong việc cắt chữ cái và cắt hình. Tài liệu chỉ ra rằng để cắt một chữ cái hoặc hình có trục đối xứng, ta có thể gấp đôi tờ giấy theo đường trục đối xứng đó để cắt, sau đó mở giấy ra ta sẽ thu được chữ cái hoặc hình đã cắt. Điều này giúp học sinh hiểu rõ và ứng dụng khái niệm trục đối xứng vào thực tế.Sản phẩm này có định dạng file Word, thuận tiện cho giáo viên trong quá trình giảng dạy và hướng dẫn. Tài liệu không chỉ đơn thuần là sổ tay hướng dẫn mà còn là tài liệu tổng hợp lý thuyết và bài tập, giúp học sinh lớp 6 nắm vững kiến thức và mở rộng kỹ năng trong môn Toán.Tóm lại, tài liệu "Tài liệu dạy thêm học thêm chuyên đề hình có trục đối xứng" là một nguồn tư liệu hữu ích trong quá trình dạy và học thêm môn Toán lớp 6. Với cấu trúc rõ ràng và nội dung tổng hợp chi tiết, tài liệu này giúp giáo viên và học sinh nắm vững khái niệm và phương pháp giải bài tập liên quan đến hình có trục đối xứng.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6