Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh giỏi Toán 12 năm 2022 - 2023 trường chuyên Hà Nội - Amsterdam

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chọn đội tuyển tham gia kỳ thi học sinh giỏi cấp thành phố môn Toán 12 năm học 2022 – 2023 trường THPT chuyên Hà Nội – Amsterdam. Trích dẫn đề chọn học sinh giỏi Toán 12 năm 2022 – 2023 trường chuyên Hà Nội – Amsterdam : + Cho đường cong (C) có phương trình y = x3 – 3×2 + 2x – 2022. Với mỗi điểm M thuộc (C), gọi dM là tiếp tuyến của đường cong (C) tại M. Trên (C) lấy điểm M1 có hoành độ xM1 = 2022. Từ điểm M1 ta xây dựng các điểm M2, M3, …, Mn theo quy tắc: điểm Mi+1 (i = 1, 2, …, n – 1 với n thuộc N, n >= 2) là điểm chung thứ hai của dMi (dMi là tiếp tuyến của đường cong (C) tại điểm Mi) với đường cong (C). Gọi xM2, xM3,…, XMn theo thứ tự là hoành độ của các điểm M2, M3, …, Mn. Tìm giá trị nhỏ nhất của n để (f(xMn) + xMn + 2021) chia hết cho 2^2022. + Cho hình lập phương ABCD.A’B’C’D’. Trên các đoạn thẳng BD, AB’ lần lượt lấy các điểm M, N không trùng với các đỉnh của hình lập phương sao cho BM = B’N. Gọi a, b theo thứ tự là số đo góc tạo bởi đường thẳng MN với các đường thẳng BD, AB’. a) Chứng minh rằng cos2a + cos2b = 1/2. b) Xác định vị trí của các điểm M, N sao cho độ dài đoạn thẳng MN ngắn nhất. Khi đó MN có phải đoạn vuông góc chung của hai đường thẳng BD và AB’ không? c) Giả sử các điểm H, K, L (khác điểm A) theo thứ tự di động trên các tia AB, AD, AA’ thỏa mãn. Chứng minh rằng mặt phẳng (HKL) luôn đi qua một điểm cố định khi H, K, L di động thỏa mãn điều kiện trên. + Một kỳ thi học sinh giỏi được diễn ra trong 2 ngày. Điểm đánh giá mỗi ngày dùng k (k > 2) giá trị khác nhau (chẳng hạn với k = 2 thì đánh giá là “đạt” (tức là 1) hoặc “không đạt” (tức là 0); với k = 8 thì điểm số dùng để đánh giá là 0; 1; 2; 3; 4; 5; 6; 7). Hãy xác định số nhiều nhất các học sinh dự thi sao cho có thể xảy ra trường hợp là trong k học sinh tùy ý, luôn có một ngày thi mà kết quả của k học sinh này đôi một khác nhau.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.
Đề thi chọn học sinh giỏi Toán THPT năm 2023 - 2024 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 201 202 203 204 205 206 207 208. Trích dẫn Đề thi chọn học sinh giỏi Toán THPT năm 2023 – 2024 sở GD&ĐT Sơn La : + Một hộp đựng 5 quả cầu trắng, 7 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3 cm. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối nón có đường tròn đáy nội tiếp tam giác SAB và đỉnh nằm trên cạnh SC bằng? + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có AB BC 2. Gọi M N lần lượt là trung điểm của AB CD. Đường thẳng BN cắt đường thẳng AC tại điểm E (5;3). Phương trình đường thẳng CM là x y 9. Tìm tọa độ điểm C.
Đề thi thử HSG lần 3 Toán 12 năm 2023 - 2024 trường THPT Trần Văn Lan - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi lần 3 môn Toán 12 năm học 2023 – 2024 trường THPT Trần Văn Lan, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm một lựa chọn và 20 câu ghi đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG lần 3 Toán 12 năm 2023 – 2024 trường THPT Trần Văn Lan – Nam Định : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng a 2. Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên AD. Tính khoảng cách giữa hai đường thẳng EF và SK. + Cho hình trụ T có hai hình tròn đáy là O và O. Xét hình nón N có đỉnh O đáy là hình tròn O và đường sinh hợp với đáy một góc. Biết tỉ số giữa diện tích xung quanh hình trụ T và diện tích xung quanh hình nón N bằng 3. Tính số đo góc. + Ông Tuấn gửi 9,8 triệu đồng tiết kiệm với lãi suất 8,4%/năm và lãi suất hàng năm được nhập vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm ông Tuấn thu được tổng số tiền 20 triệu đồng (biết rằng lãi suất không thay đổi).
Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 - 2024
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 – 2024; kỳ thi được diễn ra vào ngày 05/01/2024 và 06/01/2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi chọn học sinh giỏi Quốc gia môn Toán THPT năm học 2023 – 2024 : + Cho ABC là tam giác nhọn với tâm đường tròn ngoại tiếp O. Gọi A0 là tâm của đường tròn đi qua C và tiếp xúc với AB tại A, B0 là tâm của đường tròn đi qua A và tiếp xúc với BC tại B C 0 là tâm của đường tròn đi qua B và tiếp xúc với CA tại C. a) Chứng minh rằng diện tích tam giác A0B0C0 lớn hơn hoặc bằng diện tích tam giác ABC. b) Gọi X, Y, Z lần lượt là hình chiếu vuông góc của O lên các đường thẳng A0B0 B0C0 C0A0. (XYZ) cắt lại A0B0 B0C0 C0A0 tại X0 Y0 Z0. Chứng minh rằng AX0 BY0 CZ0 đồng quy. + Người ta xếp k viên bi vào các ô của một bảng 2024 × 2024 ô vuông sao cho hai điều kiện sau được thỏa mãn: mỗi ô không có quá một viên bi và không có hai viên bi nào được xếp ở hai ô kề nhau (hai ô được gọi là kề nhau nếu chúng có chung một cạnh). a) Cho k = 2024. Hãy chỉ ra một cách xếp thỏa mãn cả hai điều kiện trên mà khi chuyển bất kì viên bi đã được xếp nào sang một ô tùy ý kề với nó thì cách xếp mới không còn thỏa mãn cả hai điều kiện nêu trên. b) Tìm giá trị k lớn nhất sao cho với mọi cách xếp k viên bi thỏa mãn hai điều kiện trên ta có thể chuyển một trong số các viên bi đã được xếp sang một ô kề với nó mà cách xếp mới vẫn không có hai viên bi nào được xếp ở hai ô kề nhau. + Trong không gian, cho đa diện lồi D sao cho tại mỗi đỉnh của D có đúng một số chẵn các cạnh chứa đỉnh đó. Chọn ra một mặt F của D. Giả sử ta gán cho mỗi cạnh của D một số nguyên dương sao cho điều kiện sau được thỏa mãn: với mỗi mặt (khác mặt F) của D, tổng các số được gán với các cạnh của mặt đó là một số nguyên dương chia hết cho 2024. Chứng minh rằng tổng các số được gán với các cạnh của mặt F cũng là một số nguyên dương chia hết cho 2024.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6