Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề mở rộng phân số, phân số bằng nhau, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm phân số. Với a b Z b 0 ta gọi a b là một phân số trong đó a là tử số (tử) và b là mẫu số (mẫu ) của phân số. Chú ý: Mọi số nguyên đều viết được dưới dạng phân số với mẫu số là 1 1 a a. 2. Hai phân số bằng nhau. Quy tắc bằng nhau của hai phân số a c b d nếu a d b c. 3. Tính chất cơ bản của phân số. Nếu nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho. Nếu chia cả tử và mẫu của một phân số với cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: PHÂN SỐ. DẠNG 2: PHÂN SỐ BẰNG NHAU. DẠNG 3: TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. DẠNG 4: RÚT GỌN PHÂN SỐ, PHÂN SỐ TỐI GIẢN.

Nguồn: toanmath.com

Đăng nhập để đọc

Tài liệu dạy thêm - học thêm chuyên đề thứ tự thực hiện phép tính
Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề thứ tự thực hiện phép tính, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. + Đối với biểu thức không chứa dấu ngoặc ta thực hiện phép tính theo thứ tự của chiều mũi tên như sau: Luỹ thừa → Nhân – Chia → Cộng – Trừ. Được hiểu là: “Thực hiện nhân chia trước cộng trừ sau”. + Đối với biểu thức chứa dấu ngoặc, ta thực hiện phép tính trong từng loại ngoặc theo thứ tự của chiều mũi tên như sau: () → [] → {}. Được hiểu là “thực hiện từ trong ra ngoài”. Dạng 2 . Tìm x. 1. Nhắc lại các dạng toán “tìm x” cơ bản. 1.1 Tìm số hạng chưa biết trong một tổng. Muốn tìm số hạng chưa biết trong một tổng, ta lấy tổng trừ đi số hạng đã biết. 1.2 Tìm số bị trừ trong một hiệu. Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ x a b x b a. 1.3 Tìm số trừ trong một hiệu. Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu a x b x a b. 1.4 Tìm thừa số chưa biết trong một tích. Muốn tìm thừa số chưa biết trong một tích, ta lấy tích chia cho thừa số đã biết. 1.5 Tìm số bị chia trong một thương. Muốn tìm số bị chia ta lấy thương nhân với số chia x a b x b a. 1.6 Tìm số chia trong một thương. Muốn tìm số chia, ta lấy số bị chia chia cho thương a x b x a b. 2. Phương pháp giải bài toán “tìm x” ở các dạng mở rộng. Trong các dạng tìm x mở rộng nào ta cũng phải tìm phần ưu tiên có chứa x (có thể là tìm một lần hoặc tìm nhiều lần) để đưa về dạng cơ bản. Do đó, trong các bài toán “tìm x” ở dạng mở rộng ta phải tìm ra phần ưu tiên trong một bài toán tìm x. 2.1 Dạng ghép. 2.2 Dạng tích. 2.3 Dạng nhiều dấu ngoặc. 3. Phương pháp giải bài toán “tìm x” ở các dạng lũy thừa. Với dạng toán có lũy thừa, tính lũy thừa trước nếu các lũy thừa không chứa x. Tính ra số tự nhiên hoặc sử dụng các phép toán nhân, chia hai lũy thừa cùng cơ số, tùy vào bài toán cụ thể. Dạng 3 . Các bài toán liên quan đến dãy số, tập hợp. Tính tổng dãy số: Tổng = (Số đầu + Số cuối) . Số số hạng : 2. Số các số hạng = (Số cuối – Số đầu) : Khoảng cách giữa hai số liên tiếp + 1. Dạng 4 . Bài toán có lời văn.
Tài liệu dạy thêm - học thêm chuyên đề lũy thừa với số mũ tự nhiên
Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề lũy thừa với số mũ tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . THỰC HIỆN TÍNH, VIẾT DƯỚI DẠNG LŨY THỪA. Sử dụng công thức. Dạng 2 . SO SÁNH CÁC LŨY THỪA. Để so sánh hai lũy thừa ta thường biến đổi về hai lũy thừa có cùng cơ số hoặc có cùng số mũ (có thể sử dụng các lũy thừa trung gian để so sánh). Với a b m n N ta có: n n a b a b n N. Với A B là các biểu thức ta có 0 n n A B A B. Dạng 3 . TÌM SỐ CHƯA BIẾT TRONG LŨY THỪA. Khi giải bài toán tìm x có luỹ thừa phải: Phương pháp 1: Biến đổi về các luỹ thừa cùng cơ số. Phương pháp 2: Biến đổi về các luỹ thừa cùng số mũ. Phương pháp 3: Biến đổi về dạng tích các lũy thừa. Dạng 4 . MỘT SỐ BÀI TẬP NÂNG CAO VỀ LŨY THỪA. Phương pháp 1: Để so sánh hai luỹ thừa ta thường đưa về so sánh hai luỹ thừa cùng cơ số hoặc cùng số mũ. – Nếu hai luỹ thừa cùng cơ số (lớn hơn 1) thì luỹ thừa nào có số mũ lớn hơn sẽ lớn hơn. – Nếu hai luỹ thừa cùng số mũ (lớn hơn 0) thì lũy thừa nào có cơ số lớn hơn sẽ lớn hơn. Phương pháp 2: Dùng tính chất bắc cầu, tính chất đơn điệu của phép nhân. Một số dạng toán thường gặp: + Dạng 1: So sánh hai số lũy thừa. + Dạng 2: So sánh biểu thức lũy thừa với một số (so sánh hai biểu thức lũy thừa). + Dạng 3: Từ việc so sánh lũy thừa, tìm cơ số (số mũ) chưa biết. + Dạng 4: Sử dụng lũy thừa chứng minh chia hết.
Tài liệu dạy thêm - học thêm chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên
Tài liệu gồm 17 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề các phép toán cộng, trừ, nhân, chia số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. 1. PHÉP CỘNG HAI SỐ TỰ NHIÊN. Dạng 1 . Tính tổng một cách hợp lý. Vận dụng các tính chất giao hoán, kết hợp của phép cộng để tạo thành tổng tròn chục, tròn trăm. Dạng 2 . Tìm x. Coi trong ngoặc là một số hạng, số bị trừ hay số trừ cần tìm, khi đó sử dụng quan hệ phép cộng, phép trừ để đưa về dạng quen thuộc. Sau đó vận dụng quy tắc: * Muốn tìm số hạng chưa biết ta lấy tổng trừ đi số hạng đã biết. * Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ hay Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. * Muốn tìm thừa số chưa biết ta lây tích chia cho thừa số đã biết. Dạng 3 . Bài toán có lời giải. – Bước 1: Đọc kỹ đề toán và tìm hiểu xem ta đã biết được những gì. – Bước 2: Xác định xem bài toán yêu cầu gì. – Bước 3: Tìm cách giải thông qua cái đã biết và cái cần tìm. 2. PHÉP TRỪ HAI SỐ TỰ NHIÊN. Dạng 1 . Thực hiện phép tính. Thực hiện tất cả các phép cộng và trừ theo thứ tự từ trái qua phải. Tính chất phân phối giữa phép nhân đối với phép trừ. Hiệu của hai số không đổi nếu ta thêm vào một số bị trừ và số trừ cùng một số đơn vị. Dạng 2 . Tìm x. Để tìm số chưa biết trong một phép tính, ta cần nắm vững quan hệ giữa các số trong phép tính: Tìm số hạng; Lấy tổng trừ số hạng đã biết. Tìm số bị trừ: Lấy hiệu cộng số trừ. Tìm số trừ: Lấy số bị trừ trừ đi hiệu. Coi trong ngoặc là một số hạng, số bị trừ hay số trừ cần tìm,khi đó sử dụng quan hệ phép cộng, phép trừ để đưa về dạng quen thuộc. Dạng 3 . Bài toán thực tế. Tóm tắt bài toán, xác định đề bài cho yếu tố nào, tính những yếu tố nào? Mối quan hệ giữa các yếu tố với nhau. Dạng 4 . Tính tổng theo quy luật. Để đếm được số hạng 1 dãy số mà 2 số hạng liên tiếp đều nhau 1 số đơn vị ta dùng công thức. Để tính tổng các số hạng của một dãy mà hai số hạng liên tiếp cách đều nhau 1 số đơn vị ta dùng công thức. 3. PHÉP NHÂN HAI SỐ TỰ NHIÊN. Dạng 1 . Tính một cách hợp lý. – Vận dụng các tính chất giao hoán, kết hợp của phép nhân để tạo thành tích tròn chục, tròn trăm. – Vận dụng tính chất phân phối của phép nhân đối với phép cộng để tính tổng một cách hợp lý. Dạng 2 . Tính nhẩm. – Tính nhẩm bằng cách áp dụng tính chất a b c ab ac. – Tính nhẩm bằng cách chia cả hai thừa số với cùng một số thích hợp. – Tính nhẩm bằng cách nhân vào số bị chia và số chia với cùng một số thích hợp. Dạng 3 . Tìm x biết. Vận dụng quy tắc: * Muốn tìm thừa số chưa biết ta lấy tích chia thừa só đã biết. * Muốn tìm số bị trừ ta lấy hiệu cộng với số trừ. * Muốn tìm số trừ ta lấy số bị trừ trừ đi hiệu. Dạng 4 . Bài toán có lời giải. – Bước 1: Đọc kỹ đề toán và tìm hiểu xem ta đã biết được những gì. – Bước 2: Xác định xem bài toán yêu cầu gì. – Bước 3: Tìm cách giải thông qua cái đã biết và cái cần tìm. 4. PHÉP CHIA HAI SỐ TỰ NHIÊN. Dạng 1 . Thực hiện phép tính. Thực hiện phép tính theo quy tắc nhân chia trước, cộng trừ sau. Đặt phép chia và thử lại kết quả bằng phép nhân. Tích của hai số không đổi nếu ta nhân thừa số này và chia thừa số kia cho cùng một số. Thương của hai số không đổi nếu ta nhân cả số bị chia và số chia cho cùng một số a b c a c b c (trường hợp chia hết). Dạng 2 . Tìm x. Tìm thừa số lấy tích chia thừa số đã biết. Tìm số chia lấy số bị chia chia cho thương. Tìm số bị chia lấy thương nhân số chia. Nếu a b 0 thì a 0 hoặc b 0. Dạng 3 . Bài toán thực tế. Đọc kỹ đề bài, xác định đề bài cho những gì và yêu cầu gì? Áp dụng những kiến thức đã học để giải bài toán. Dạng 4 . Trắc nghiệm.
Tài liệu dạy thêm - học thêm chuyên đề thứ tự trong tập hợp các số tự nhiên
Tài liệu gồm 11 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề thứ tự trong tập hợp các số tự nhiên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. A. Bài tập trắc nghiệm. B. Bài tập tự luận Dạng 1 : Tìm số tự nhiên liền trước, liền sau. Tìm số tự nhiên thỏa mãn điều kiện cho trước. Trên trục số nằm ngang, chiều mũi tên đi từ trái sang phải, điểm bên trái biểu diễn số nhỏ, điểm bên phải biểu diễn số lớn. Vì hai số tự nhiên liên tiếp hơn kém nhau 1 đơn vị, để tìm số tự nhiên liền sau của số tự nhiên a ta tính a 1; tìm số tự nhiên liền trước của số tự nhiên a a 0 ta tính a 1. Số 0 không có số tự nhiên liền trước. Ba số tự nhiên liên tiếp tăng dần có dạng: a a 1 a 2 hoặc a 1 a a 1. Dạng 2 : Viết tập hợp các số tự nhiên; biểu diễn số tự nhiên trên tia số. + Viết tập hợp các số tự nhiên không vượt quá yêu cầu của đề bài và biểu diễn tập hợp trên tia số. + Hai cách biểu diễn tập hợp là liệt kê phần tử và chỉ ra tính chất đặc trưng của tập hợp. + Số các số tự nhiên liên tiếp từ a đến b là b a 1. + Số các số lẻ (chẵn) tự nhiên liên tiếp từ a đến b là 2 1 b a. Dạng 3 : So sánh hai số tự nhiên. + Trong hai số tự nhiên khác nhau, luôn có một số nhỏ hơn số kia. Nếu số a nhỏ hơn số b thì trên tia số nằm ngang điểm a nằm bên trái điểm b. Ta viết a b hoặc b a. Ta còn nói điểm a nằm trước điểm b hoặc điểm b nằm sau điểm a. Trên tia số: Số ở gần 0 hơn là số bé hơn (chẳng hạn: 2 5 …) số ở xa gốc 0 hơn là số lớn hơn (chẳng hạn 12 11). + Sử dụng tính chất bắc cầu: a b và b c thì a c. + Trong hai số tự nhiên: Số nào có nhiều chữ số hơn thì số đó lớn hơn. Chẳng hạn: 100 99. Số nào có ít chữ số hơn thì bé hơn. Chẳng hạn: 99 100. Nếu hai số có chữ số bằng nhau thì so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải. + Xếp thứ tự các số tự nhiên: Vì có thể so sánh các số tự nhiên nên có thể xếp thứ tự các số tự nhiên từ bé đến lớn hoặc ngược lại. Ví dụ: Với các số 7698; 7968; 7896; 7869 có thể: + Xếp thứ tự từ bé đến lớn: 7698; 7869; 7896; 7968. + Xếp thứ tự từ lớn đến bé: 7968; 7896; 7869; 7698. Dạng 4 : Toán thực tế. + Sử dụng tính chất bắc cầu để so sánh các bài tập thực tế: a b và b c thì a c. + Dựa vào tập hợp số tự nhiên và thứ tự trong tập hợp các số tự nhiên để suy luận.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6