Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm trung điểm của đoạn thẳng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề trung điểm của đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Trung điểm của đoạn thẳng: Định nghĩa: Trung điểm của đoạn thẳng là điểm nằm giữa hai đầu mút của đoạn thẳng và cách đều hai đầu mút đó. Chú ý: Điểm I là trung điểm của đoạn thẳng AB. + Điểm I nằm giữa hai điểm A và B và IA IB. + Hoặc IA IB AB IA IB. + Hoặc 1 2 IA IB AB. 2. Các dạng toán thường gặp. Dạng 1: Tính độ dài đoạn thẳng. Phương pháp: Ta sử dụng: Nếu M là trung điểm của đoạn thẳng AB thì 1 2 MA MB AB. Dạng 2: Chứng tỏ một điểm là trung điểm của đoạn thẳng. Phương pháp: Để chứng tỏ điểm I là trung điểm của đoạn thẳng AB ta có 3 cách. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đăng nhập để đọc

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm về tập hợp. Một tập hợp gọi tắt là tập bao gồm những đối tượng nhất định. Các đối tượng ấy gọi là các phần tử của tập hợp. 2. Các kí hiệu. – Tập hợp kí hiệu bằng chữ in hoa: A , B , C. – Nếu x là một phần tử của tập hợp A thì ta kí hiệu là: x A. – Nếu y là một phần tử không thuộc tập B thì ta kí hiệu là: y B. 3. Hai cách để mô tả một tập hợp. a) Cách 1. Liệt kê tất cả các phần tử của tập hợp. Viết các phần tử vào trong dấu theo một thứ tự tùy ý nhưng mỗi phần tử chỉ viết 1 lần. VD1: Tập hợp A các số tự nhiên nhỏ hơn 4 là VD2: Tập hợp B các chữ cái trong từ TAP HOP là: B T A P H O. b) Cách 2. Chỉ ra tính chất đặc trưng của các phần tử trong tập. VD3: Tập hợp C các số tự nhiên x nhỏ hơn 6 là C x x là một trong các số tự nhiên đầu tiên. 4. Chú ý. Tập hợp không chứa phần tử nào gọi là tập hợp rỗng và kí hiệu là rỗng. VD: Tập hợp những số tự nhiên bé hơn 0 là tập hợp rỗng. 5. Tập hợp con – Nếu mọi phần tử của tập hợp A đều thuộc tập hợp B thì tập hợp A gọi là tập hợp con của tập hợp B. – Kí hiệu: A B hay B A, đọc là: A là tập hợp con của tập hợp B hoặc A được chứa trong B hoặc B chứa A. – Chú ý: Tập rỗng là tập hợp con của mọi tập hợp. Tập hợp A là con của chính tập hợp A. – Ví dụ: Cho ba tập hợp: A M N Tập hợp M là tập hợp con của tập hợp A vì các phần tử của tập hợp M đều thuộc tập hợp A. Tập hợp N không là tập hợp con của tập hợp A vì phần tử 1 của tập hợp N không thuộc tập hợp A. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Chuyên đề tam giác
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm được định nghĩa tam giác. + Hiểu được khái niệm đỉnh, góc, cạnh của tam giác. Kĩ năng: + Biết vẽ tam giác, biết gọi tên các đỉnh, các cạnh, các góc của tam giác. + Nhận biết được điểm nằm bên trong và bên ngoài tam giác. I. LÍ THUYẾT TRỌNG TÂM Tam giác ABC: + Tam giác ABC là hình gồm ba đoạn thẳng AB, BC, CA với ba điểm A, B, C không thẳng hàng. + Tam giác ABC được kí hiệu là ABC hoặc ACB BCA BAC CAB CBA. + Ba điểm A, B, C được gọi là ba đỉnh của tam giác. + Ba đoạn thẳng AB, BC, CA được gọi là ba cạnh của tam giác. + Ba góc CAB ABC BCA được gọi là ba góc của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tam giác và các yếu tố của tam giác. Dạng 2 : Vẽ hình. Ta xét hai bài toán cơ bản: Bài toán 1. Vẽ tam giác ABC khi biết độ dài 3 cạnh. + Bước 1. Dựng đoạn BC. + Bước 2. Vẽ cung tròn tâm B bán kính BA. + Bước 3. Vẽ cung tròn tâm C bán kính CA. + Bước 4. Hai cung tròn cắt nhau tại điêm A. Vẽ điểm A. + Bước 5. Nối AB, BC, AC ta được tam giác ABC. Bài toán 2. Vẽ tam giác ABC khi biết số đo góc A và độ dài hai cạnh AB, AC. + Bước 1. Vẽ góc A. + Bước 2. Dựng hai đoạn AB, AC. + Bước 3. Nối BC được tam giác ABC.
Chuyên đề đường tròn
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Nắm vững khái niệm đường tròn, hình tròn. + Nhận biết được dây cung, đường kính, bán kính của đường tròn. + Nhận biết được vị trí của một điểm so với đường tròn. Kĩ năng: + Sử dụng thành thạo compa trong việc vẽ đường tròn, hình tròn. I. LÍ THUYẾT TRỌNG TÂM Đường tròn: Đường tròn tâm O, bán kính R là hình gồm các điểm cách O một khoảng bằng R, kí hiệu (O:R). Hình tròn: Hình tròn là hình gồm các điểm nằm trên đường tròn và các điểm nằm bên trong đường tròn đó. Mọi điểm thuộc đường tròn thì thuộc hình tròn đó. Cung và dây cung: Giả sử A, B là hai điểm nằm trên đường tròn tâm O. Hai điểm này chia đường tròn thành hai phần, mỗi phần gọi là một cung tròn (gọi tắt là cung). Khi đó hai điểm A và B được gọi là hai mút của cung. Đoạn thẳng nối hai mút của cung là dây cung. Dây đi qua tâm là đường kính. Đường kính dài gấp đôi bán kính. II. CÁC DẠNG BÀI TẬP Dạng 1 . Nhận biết vị trí của một điểm với đường tròn. Cho đường tròn tâm O bán kính R. + Điểm M nằm trong đường tròn (O;R) khi và chỉ khi OM < R. + Điểm N nằm trong đường tròn (O;R) khi và chỉ khi ON = R. + Điểm P nằm trong đường tròn (O;R) khi và chỉ khi OP > R. Dạng 2 . Vẽ hình. Dạng 3 . Tính độ dài đoạn thẳng.
Chuyên đề tia phân giác của góc
Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia phân giác của góc, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 2: Góc. Mục tiêu : Kiến thức: + Hiểu và phát biểu được định nghĩa tia phân giác của một góc. + Biết dùng thước đo góc và cách gấp giấy để vẽ tia phân giác của một góc cho trước. Kĩ năng: + Biết vẽ tia phân giác của một góc. + Nhận biết và chứng minh được tia phân giác của một góc. + Vận dụng định nghĩa tia phân giác của một góc để tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM + Tia phân giác của một góc là tia nằm giữa hai cạnh của góc và tạo với hai cạnh ấy hai góc bằng nhau. + Mỗi góc (không phải là góc bẹt) chỉ có một tia phân giác. II. CÁC DẠNG BÀI TẬP Dạng 1 : Vẽ tia phân giác của một góc. Dạng 2 : Chứng minh một tia là phân giác của một góc cho trước. Chứng minh tia Oy là tia phân giác của xOz. Cách 1: + Chứng minh tia Oy nằm giữa hai tia Ox và Oz. + Chứng minh xOy yOz. Cách 2: Chứng minh 1 2 xOy yOz xOz. Dạng 3 : Tính số đo góc.

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6