Notice: Undefined variable: dm_xaphuongcode in /home/admin/domains/thuviennhatruong.edu.vn/public_html/router/route_congdong.php on line 13
Quản lý thư viện cộng đồng
Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Yên Thành - Nghệ An

Ngày … tháng 12 năm 2021, phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2021 – 2022. Đề thi HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Yên Thành – Nghệ An gồm có 05 bài toán, thời gian làm bài 120 phút, đề thi gồm 01 trang.

Nguồn: toanmath.com

Đăng nhập để đọc

Đề học sinh giỏi Toán 9 năm 2023 - 2024 trường THCS Hải Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp trường môn Toán 9 năm học 2023 – 2024 trường THCS Hải Hòa, thị xã Cửa Lò, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 trường THCS Hải Hòa – Nghệ An : + Cho biểu thức: P = 2 x 1 a) Rút gọn P. b) Tính giá trị của biểu thức P tại |x – 1| = 4 − 12 + 19 – 192. c) Tìm x để 6 Q P nhận giá trị nguyên. + Chứng minh rằng với mọi n N và n > 2 thì n4 – n + 2 không phải là số chính phương. + Cho ABC vuông tại A; BC = 2a (cm). Đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AC, AB. Chứng minh rằng: a) AB.EB + AC.EH = AB2. b) Qua điểm B vẽ đường thẳng song song với AC, qua điểm C vẽ đường thảng song song với AB, hai đường thẳng này cắt nhau tại M. Gọi N và K lần lượt là trung điểm của BM và HC. Chứng minh AK vuông góc với KN. c) Tìm giá trị lớn nhất của diện tích tứ giác ADHE.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Kim Thành, tỉnh Hải Dương; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Kim Thành – Hải Dương : + Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 – 3y2 – 2xy – 2x + 14y = 11. Cho n là số nguyên dương thỏa mãn 12n2 + 1 là số nguyên. Chứng minh rằng: 212n2 + 1 + 2 là số chính phương. + Cho đường tròn (O) và đường thẳng d cắt đường tròn (O) tại hai điểm B, C (d không đi qua O). Trên tia đối của tia BC lấy điểm A (A nằm ngoài (O)). Kẻ AM và AN là các tiếp tuyến với đường tròn (O) tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K. a) Chứng minh AK.AI = AM2. b) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh P là trung điểm của ME. + Cho tam giác ABC, trên trung tuyến AD lấy điểm I cố định (I khác A và D). Đường thẳng d đi qua I cắt các cạnh AB, AC lần lượt tại M, N. Xác định vị trí của đường thẳng d để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề học sinh giỏi Toán 9 vòng 1 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút. Trích dẫn Đề học sinh giỏi Toán 9 vòng 1 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho các số thực a, b không âm thỏa mãn điều kiện 2a + 2b + ab = 4. Tính giá trị của biểu thức P. + Cho a, b, c là các số nguyên thỏa mãn a + b + c = c3 – 7c. Chứng minh rằng: a3 + b3 + c3 chia hết cho 6. + Cho tam giác ABC vuông tại A có đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB và AC. 1) Chứng minh: AE.EB + AF.FC = AH2 và BC.cos3B = BE. 2) Chứng minh: BE.CH + CF.BH = AH.BC. 3) Gọi M là trung điểm của BC. Từ A kẻ đường thẳng d vuông góc với AM tại A. Từ B kẻ tia Bx vuông góc với BC cắt đường thẳng d tại P. Chứng minh PC đi qua trung điểm của AH.
Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 - 2024 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 09 năm 2023. Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội : + Cho x và y là các số nguyên dương thỏa mãn x3 + y và x + y3 cùng chia hết cho x2 + y2. Chứng minh rằng 2x + 2y là số chính phương. + Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. 1. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. 2. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. 3. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1. + Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử?

Fatal error: Uncaught Error: Call to a member function queryFirstRow() on null in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php:6 Stack trace: #0 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index_congdong.php(98): require_once() #1 /home/admin/domains/thuviennhatruong.edu.vn/public_html/index.php(8): require_once('/home/admin/dom...') #2 {main} thrown in /home/admin/domains/thuviennhatruong.edu.vn/public_html/view/congdong/layout/footer.php on line 6